Management of the quality in the pre-analytical phase

Kjell Grankvist
Dept. of Medical Biosciences, Clinical Chemistry
Umeå University, Umeå, Sweden
Clinical practice guidelines

• Clinical practice guidelines aim to guide healthcare staff in decision making and are an indispensable part of professional quality systems.

• Clinical practice guidelines aims to standardize medical care; raise care quality and reduce patient risks by reducing inappropriate variations in practice.

• Clinical practice guidelines are usually consensus statements on best available practice in a particular area.
Phlebotomy practice guideline CLSI H3-A6 steps

Facilities
 Venipuncture chairs
 Hospital area

Supplies

Phlebotomy
 Step 1: Prepare accession order
 Step 2: Approach and identify the patient; Sanitize hands
 Step 3: Verify patient diet restrictions and latex sensitivity
 Step 4: Assemble supplies
 Step 5: Position patient
 Step 6: Apply tourniquet
 Step 7: Put on gloves
 Step 8: Cleanse venipuncture site
 Step 9: Perform venipuncture
 Step 10: Order of draw
 Step 11: Release of tourniquet
 Step 12: Place the gauze pad
 Step 13: Remove and dispose of needle
 Step 14: Bandage of arm
 Step 15: Label blood collection tubes and record time of collection
 Step 16: Observe special handling if required
 Step 17: Send blood collection tubes to proper laboratories

Additional considerations
 Monitoring blood volume collected
 Hematoma
 Hemolysis
 Nerve damage
Phlebotomy practice guideline CLSI H3-A6 drawbacks

- Few practice steps are evidence-based
- Comprehensive and extensive.
- Many discrete chronological practice steps, all of which can be subject to error.
- The numerous phlebotomy practice steps are difficult to remember - important steps may be forgotten or unintentionally missed.
- Limited to the collection procedure (of the preanalytical phase).
- To a large extent focused on patient and collectors safety at the collection and not on the overall effects of a bad quality sample on patient safety.
- Does not contain risk evaluation of the different practice steps.
- Lacks advice on how to best implement and sustain practices recommended by the guideline.
Preanalytical errors in the laboratory

- Analytical laboratories often monitor, register and address the seemingly randomly distributed and infrequent preanalytical errors that arise throughout the healthcare organisation.

Low registered error frequency, typically < 1%

At best comparison between labs only!!

QI:s of IFCC WG-LEPS, National programmes
Preanalytical errors in the laboratory

• These errors are not effectively managed and still pose a challenge to laboratory professionals and constantly jeopardise patient safety.
Preanalytical errors in the laboratory

• Modifying staff behavior to conform to practice guidelines and other recommended practices is difficult.

• One reason is that efficient and accurate methods for measuring guideline practice adherence are not applied.
“Modifying staff behavior to conform to practice guidelines and other recommended practices is difficult.”

Planning and Studying Improvement in Patient Care: The Use of Theoretical Perspectives

RICHARD P.T.M. GROL, MARIJE C. BOSCH, MARLIES E.J.L. HULSCHER, MARTIN P. ECCLES, and MICHEL WENSING

The Milbank Quarterly, Vol. 85, No. 1, 2007 (pp. 93–138)
Evidence-based factors for improving guideline adoption:

• evidence that the context is accessible to change,

• the appropriate monitoring and feedback mechanisms,

• available time for personnel to discuss findings.
Conclusion: Workplace affiliation largely (40%) explains variances in self-reported adherence to venous blood specimen collection guidelines for patient identification and test request handling practices among phlebotomy staff. Characteristics of the workplace, as well as of the individual phlebotomist, need to be identified in order to design strategies to improve clinical practice in this and other areas.

“Near miss” events (practice non-adherence) – the high frequency allows quantification also at ward/PHC level

Comparisons between all health care levels possible!
“Near miss” events (practice non-adherence) – the high frequency allows quantification also at ward/PHC level

Focusing on the frequency of near misses (practice non-adherence) would thus lead to better opportunities for quality improvement than mere focus on assessment of underreported incidents, registered rare adverse errors and sample reject.

The use of reliable quality indicators that effectively evaluate the quality of the steps of the preanalytical phase can thus drive improvement programs for better laboratory services and patient safety.
Preanalytical quality indicators/tools useful at monitoring “near-misses” at laboratory as well as hospital ward/primary health care center level!

- Questionnaires on preanalytical practices
- Observational studies of preanalytical practices
Questionnaire surveys have several benefits as they are practical to handle, self-administered, economical and give the respondents anonymity. It is also easy to reach a large study group in a large geographic area.

When using questionnaires it is important to confirm validity (i.e. how well an instrument measures what it is supposed to measure) and reliability (i.e. stability) of the included items.
Questionnaire on venous blood sampling practices

“How do you usually perform.......?”:

Patient rest before venous blood sampling
Patient identification
Find sampling guidelines/instructions
Test request management
Test tube labelling
Mix test tube content
Incidence reporting
Results of PhD-theses by Wallin and Söderberg

They investigated sources and frequencies of venous blood specimen collection practices errors in hospitals and primary health care units (PHCs) using a self-estimated questionnaire on collection staff:

Hospital wards:
20% labelled test tubes after sampling away from patient
18% reported always using (up-dated) online guidelines
10% did not always compare patient id with test request

PHCs:
12% released stasis as soon as possible
54% always used name and identification number
6% stated see to patient rest required time prior sampling
Ana-Maria Simundic*, Stephen Church, Michael P. Cornes, Kjell Grankvist, Giuseppe Lippi, Mads Nybo, Nora Nikolac, Edmee van Dongen-Lases, Pinar Eker, Svjetlana Kovalevskaya, Gunn B.B. Kristensen, Ludek Sprongl and Zorica Sumarac

Compliance of blood sampling procedures with the CLSI H3-A6 guidelines: An observational study by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) working group for the preanalytical phase (WG-PRE)

The observational survey aimed:

• to assess the level of compliance of phlebotomy procedures with CLSI H3-A6 guideline;

• to identify the most critical steps which need immediate attention and improvement in EFLM member countries by creating a risk occurrence chart based on the observed error frequency and severity scoring.
Staff members performing blood collection observed three times in three different settings:
 1) an outpatient phlebotomy unit;
 2) a hospital clinical ward; and
 3) an emergency department

Twelve European countries participated with a median of 33 (18 – 36) audits per country, and a total of 336 audits.
Methods

A structured **checklist** including 29 items (the CLSI H3-A6 guideline practice steps).

A **risk occurrence chart** of individual phlebotomy steps was created from the **observed practice error frequency** and **ranking the severity of harm** of each guideline key issue.

The **severity of practice errors** occurring during phlebotomy were **graded** using the risk occurrence chart.
Checklist with CLSI H3-A6 guideline practice steps

PHLEBOTOMY COLLECTOR OBSERVATION FORM

<table>
<thead>
<tr>
<th>Observer name</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlebotomist name/ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlebotomist profession</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of collection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collection 1</th>
<th>Collection 2</th>
<th>Collection 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Did the collector assemble all necessary supplies prior to collection?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Question 2 | Yes | No | Yes | No | Yes | No |
| Does the collector have an identified request form? | | | | |

| Question 3 | Yes | No | Yes | No | Yes | No |
| Did the collector check the expiry dates of devices in use? | | | | |

| Question 4 | Yes | No | Yes | No | Yes | No |
| Did the collector identify the patient according to CLSI or local guidelines | | | | |

| Question 5 | Yes | No | Yes | No | Yes | No |
| | | | | | | |
Observed error frequencies

Patient id

Tube labelling
<table>
<thead>
<tr>
<th>Probability of harm</th>
<th>Abbreviation</th>
<th>Textual definition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incredible</td>
<td>01</td>
<td>Harm almost certainly will not happen</td>
<td><0.01</td>
</tr>
<tr>
<td>Improbable</td>
<td>02</td>
<td>Harm is very unlikely</td>
<td>>0.01–0.1</td>
</tr>
<tr>
<td>Remote</td>
<td>03</td>
<td>Harm is not a strong likelihood</td>
<td>>0.1–0.2</td>
</tr>
<tr>
<td>Occasional</td>
<td>04</td>
<td>Harm is sporadic</td>
<td>>0.2–0.5</td>
</tr>
<tr>
<td>Probable</td>
<td>05</td>
<td>Harm is almost certain</td>
<td>>0.5–0.75</td>
</tr>
<tr>
<td>Frequent</td>
<td>06</td>
<td>Harm is virtually assured</td>
<td>>0.75</td>
</tr>
</tbody>
</table>
Severity of harm ranking

Table 2 Severity scoring system.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Ranking</th>
<th>Abbreviation</th>
<th>Textual definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>S1</td>
<td>No impact</td>
</tr>
<tr>
<td>Limited</td>
<td>Limited</td>
<td>S2</td>
<td>Additional (unnecessary) sample collection</td>
</tr>
<tr>
<td>Moderate</td>
<td>Moderate</td>
<td>S3</td>
<td>Delayed diagnosis</td>
</tr>
<tr>
<td>Severe</td>
<td>Severe</td>
<td>S4</td>
<td>Inappropriate therapy based on inaccurate lab results</td>
</tr>
<tr>
<td>Life threatening</td>
<td>Life threatening</td>
<td>S5</td>
<td>Potential fatal outcome</td>
</tr>
</tbody>
</table>
Risk occurrence chart

<table>
<thead>
<tr>
<th>Occurrence probability</th>
<th>Severity of harm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>Frequent</td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td></td>
</tr>
<tr>
<td>Probable</td>
<td>Q7, Q11, Q24</td>
</tr>
<tr>
<td>O5</td>
<td>Q5, Q13, Q28, Q29</td>
</tr>
<tr>
<td>Occasional</td>
<td>Q8, Q9, Q21</td>
</tr>
<tr>
<td>Remote</td>
<td>Q1, Q27, Q18</td>
</tr>
<tr>
<td>Improbable</td>
<td>Q1</td>
</tr>
<tr>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td></td>
</tr>
</tbody>
</table>

Study conclusions

• **Observation is an efficient and very useful tool** to assess the compliance to phlebotomy practices.

• **Severity of error grading** of the guideline steps possible by creating a risk occurrence chart from the *observed practice error frequency* and a *severity of harm ranking* of guideline key issues.

• The **most critical practice steps** in need of immediate attention were patient identification and tube labelling (CLSI H3-A6).
Next step

Observational studies with practice error frequency assessment and risk analysis extended to cover whole preanalytical phase.

The risk analysis will sort out the most important preanalytical steps to consider when implementing and sustaining good preanalytical practices.

Preanalytical practice guidelines to cover whole preanalytical phase.
Evidence-based factors for improving guideline adoption:

• evidence that the context is accessible to change,

• the appropriate monitoring and feedback mechanisms,

• available time for personnel to discuss findings.
Overall conclusion

Repeated local observational studies with practice error frequency assessment and risk analysis

combined with

feed-back, discussions and reflection amongst involved personnel...

is an efficient strategy to implement and sustain good guideline practices and increase patient safety.