Editorial

Mauro Panteghini and Sverre Sandberg

Defining analytical performance specifications
15 years after the Stockholm conference

The Stockholm Conference in 1999 was a landmark in trying to achieve a consensus on how quality specifications should be set and a hierarchy of models was established [1]. In his paper, Callum Fraser gives not only a historic review of the 1999 Conference, where he served as a co-chair, but also a general survey of the history of laboratory quality specifications [2]. He underlines that time has come to revisit this hierarchy, investigating to what extent it is still valid or if it should be modified or expanded, which is the ultimate goal of the EFLM conference.

The conference comprised five sessions. The first three sessions examined the possibility and the pros and cons to base performance specifications on clinical needs, on biological variation data or on state-of-the-art of the measurement procedure, respectively. In their article on behalf of the EFLM Working Group (WG) on Test Evaluation, Horvath et al. [3] discuss the complexity of outcome-related models in a way that allows investigation of the impact of analytical performance on medical decisions and patient management. Whilst it is acknowledged that these types of evaluations are difficult and may not be possible for all measurands in laboratory medicine, the authors consider this approach as the “gold standard” for setting specifications. Next, Per Hyltoft Petersen, another one of the 1999 conference organizers, expanded the discussion to cover the use of simulation studies as a way to model the probability of clinical outcome and the impact of analytical performance upon them [4]. As an example, the influence of analytical performance is investigated for diagnosing of diabetes using hemoglobin A\textsubscript{1c} and for individuals at risk for coronary heart disease as defined by serum cholesterol concentrations. In another article, Thue and Sandberg address the topic of performance specifications based on how clinicians use laboratory tests [5]. These authors comment, however, that there is a large variability among clinician behaviors that can limit the role of this approach and that it merely reflects the expectations of the clinicians rather than the ultimate specifications that should be set.

The group of Ricos reviews the rationale for using data on biological variation to derive analytical specifications
and shares EQAS data from the Spanish program, which employs this approach [6]. Thereafter Carobene describes the heterogeneity of available biological variation data [7]. In general, any time an estimate of intra-individual CV is >33.3%, it is likely an indication that the distribution of the individual variances is not Gaussian and therefore the parametric statistical handling is not appropriate [8, 9]. Despite the questions regarding the reliability of information, this author confirms the importance of a biological variation database that should, however, include only products of appropriately powered studies. On behalf of the EFLM WG on Biologic Variation, Bartlett et al. presents indeed a critical appraisal checklist to enable standardized assessment of papers on biologic variation [10]. The checklist identifies key elements to be reported in this type of studies: method of sample collection, number of subjects and samples, population type, sample analysis and data derivation. This checklist can also be used a guide on how to perform studies on biological variation.

Haeckel and coworkers give us an overview of statistics that may be used to overcome some disadvantages inherent to the model deriving performance specifications from the state-of-the-art of the measurement [11], while Matthias Orth discusses the evolving German experience and the regulation-driven performance criteria in general [12].

The fourth session of the conference discussed performance criteria in different situations. In the paper by Schimmel and Zegers, we read about the need that calibration hierarchies have to be implemented correctly and parameters contributing to measurement uncertainty and systematic bias controlled and eliminated, respectively, by technically improving reference methods and materials [13]. Panteghini and his group describe the criteria behind the definition of allowable limits for measurement uncertainty across the entire traceability chain [14]. IVD manufacturers will need to take more responsibility and report the combined (expanded) uncertainty associated with their calibrators when used in conjunction with other components of the analytical system (platform and reagents). This is more than what they are currently providing as information; typically they only provide the name of the higher order reference to which the calibration is traced. Ceriotti et al. discuss how to define a significant deviation in the internal quality control (IQC) practice by transferring uncertainty calculations onto the IQC chart [15]. Jones notes that there is an embarrassing variation in the performance specifications being used by EQAS providers, which needs harmonization through a collaborative effort [16]. Oosterhuis and Sandberg present a model that combines the “state-of-the-art” with biological variation for the calculation of performance specifications. The validity of reference limits and reference change values are central to this model [17]. In addition, they remind the readers that the estimation of total error by adding the performance specification for maximum allowable imprecision and maximum allowable bias is in principle not valid. Nordin addresses “qualitative” laboratory tests and help to clarify that performance specifications for nominal examination procedures must be set with respect to the type of test [18].

Final articles of this series by the Plebani’s group [19] and Sikaris [20] cover the remaining parts of the total examination process (i.e., pre- and post-analytical phases), highlighting the limitations that still hamper the use of quality performance specifications in these parts of laboratory processes.

In this Special Issue the Scientific Programme Committee of the conference publishes a consensus statement that was elaborated in a draft form before the conference and distributed to all the participants for further discussion [21]. Although the essence of the hierarchy originally established in 1999 was supported, new perspectives have been forwarded prompting simplification and explanatory additions. Basically, the recommended approaches for defining analytical performance specifications should rely on the effect of analytical performance on clinical outcomes or on the biological variation of the measurand. The attention is primarily directed towards the measurand and its biological and clinical characteristics, some models being therefore better suited for certain measurands than for others. About the pre- and post-analytical phases, it is time to go further and to include performance specifications for these extra-analytical phases. The specifications should ideally follow the same models as the analytical phase.

The main outcome of the conference has been the creation of an EFLM Task Force (TF) on Performance Specifications in Laboratory Medicine (TF-PS). Under the TF-PS five Task and Finish Groups (TFG) have been established dealing with the main topics of the conference (Figure 1). The terms of reference of the TFG are the following:

- **TFG 1**: To allocate different tests to different models recognized in the Strategic Conference consensus statement and to give an overview and a reason for why tests are allocated to the different models;
- **TFG 2**: To define performance specifications for the most common measurands that should be used by EQAS organizers (for category I EQAS according to Miller et al. [22]);
– TFG 3: To come up with a proposal for how to use the total error concept and how to possible combine performance specifications for bias and imprecision;
– TFG 4: To come up with a general proposal on how to generate performance specifications for the pre- and post-analytical phases;
– TFG 5: To use a critical appraisal list to evaluate literature on biological variation and extract essential information from the papers as well as summarizing the selected information on a database on the EFLM website.

Acknowledgments: The Conference was generously and unconditionally supported by Abbott Diagnostics, Bio-Rad, DiaSorin, Roche Diagnostics and Siemens Healthcare Diagnostics.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Financial support: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

*Corresponding author: Mauro Panteghini, Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Milan, Italy, E-mail: mauro.panteghini@unimi.it
Sverre Sandberg: Norwegian Quality Improvement of Primary Care Laboratories (Noklus), Institute of Global Public Health and Primary Health Care, University of Bergen and Laboratory of Clinical Biochemistry, Bergen, Norway

Supplemental Material: The online version of this article (DOI: 10.1515/cclm-2015-0303) offers supplementary material, available to authorized users.