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Background: Despite international standardization programs for LDLc and HDLc measurements, results
vary significantly with methods from different manufacturers. We aimed to simulate the impact of
analytical error and hypertriglyceridemia on HDLc- and LDLc-based cardiovascular risk classification.
Methods: From the Dutch National EQA-2012 external quality assessment of 200 clinical laboratories, we
examined data from normotriglyceridemic (~1 mmol/l) and hypertriglyceridemic (~7 mmol/l) serum
pools with lipid target values assigned by the Lipid Reference Laboratory in Rotterdam. HDLc and LDLc
were measured using direct methods of Abbott, Beckman, Siemens, Roche, Olympus, or Ortho Clinical
Diagnostics. We simulated risk reclassification using HDL- and sex-specific SCORE multipliers consid-
ering two fictitious moderate-risk patients with initial SCORE 4% (man) and 3% (woman). Classification
into high-risk treatment groups (LDLc >2.50 mmol/l) was compared between calculated LDLc and direct
LDLc methods.
Results: Overall HDLc measurements in hypertriglyceridemic serum showed negative mean bias of —15%.
HDL-multipliers falsely reclassified 70% of women and 43% of men to a high-risk (SCORE >5%) in
hypertriglyceridemic serum (P < 0.0001 vs. normotriglyceridemic serum) with method-dependent risk
reclassifications. Direct LDLc in hypertriglyceridemic serum showed positive mean bias with Abbott
(+16%) and Beckman (+14%) and negative mean bias with Roche (—7%). In hypertriglyceridemic serum,
57% of direct LDLc measurements were above high-risk treatment goal (2.50 mmol/l) vs. 29% of direct
LDLc (33% of calculated LDLc) in normotriglyceridemic sera.
Conclusion: LDLc and HDLc measurements are unreliable in severe hypertriglyceridemia, and should be
applied with caution in SCORE risk classification and therapeutic strategies.
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1. Introduction

The EAS/ESC guidelines recommend that asymptomatic in-
dividuals at high cardiovascular disease (CVD) mortality risk should
be identified for statin therapy [1]. For this purpose, risk assess-
ment is performed using the SCORE (Systematic COronary Risk
Evaluation) prediction model estimating 10-y risk of CVD mortality,
based on gender, age, total cholesterol, systolic blood pressure and
smoking status. Recently, the 2011 ESC—EAS guidelines on the
management of dyslipidemias have considered the additional
impact of high-density lipoprotein cholesterol (HDLc) on CVD risk
by displaying 4 separate SCORE charts to 4 different levels of HDLc
(mmol/1): 0.8, 1.0, 1.4 and 1.8 [1]. The effects of differing HDLc levels
may also be calculated from the classical SCORE using HDL- and
sex-specific multipliers according to Descamps et al. [2].

In patients with dyslipidemia, prevention strategies with either
lifestyle changes or lipid-lowering agents are primarily targeted by
low-density lipoprotein cholesterol (LDLc). The higher the pre-
dicted risk, the lower is the recommended LDLc goal and hence the
need to initiate statin therapy. The recommended LDLc therapeutic
goal is <2.50 mmol/l in high risk individuals (SCORE 5—9%) and
<1.80 mmol/l or a 50% reduction in LDLc in very high risk in-
dividuals (SCORE >10%) [1].

There is a direct relationship between serum LDLc and incidence
of CVD. Similarly, there is a strong inverse association between
HDLc and CVD, although recent Mendelian randomization studies
found no causal relationship between genetically decreased or
increased HDLc and the risk of myocardial infarction [3,4]. How-
ever, our concern about including HDLc and LDLc in risk estimation
models relates to the potential for analytical error due to impreci-
sion and bias of the lipid measurements. Despite the widespread
belief that the calculation or measurement of LDLc or HDLc is
standardized and reproducible, results can vary significantly with
methods from different manufacturers. In the previous century, the
earliest measurements involved ultracentrifugation and precipita-
tion for isolation of LDL and HDL [5]. In the late 1990s, “homoge-
neous” or “direct” LDLc and HDLc methods have been introduced in
the clinical laboratories and largely replaced the older assays [6—38].
Direct LDLc and HDLc methods are commercially available as ready-
to-use reagents, enabling full automation of the measurements,
however their bias (deviation from “true” value) is a major point of
concern. Discrepant results have been reported among the various
direct methods, particularly in hypertriglyceridemic and dyslipi-
demic samples [9—13]. This is also evident from large-scale accu-
racy-based quality surveys organized across different laboratories
[14]. Problems with direct HDLc assays also raise concerns about
the reliability of calculated LDLc and non-HDLc treatment goals
[12]. Poor reliability of these methods relate to the heterogeneity of
both LDL and HDL particles [11,12].

In this study, we aimed to illustrate the potential impact of
analytical errors in current LDLc and HDLc measurements on
making clinical decisions. A simulation is used here to explore
potential CVD risk misclassifications as defined by the SCORE
model. Misclassification may occur if a true lipid concentration is
within a desirable range, but the reported lipid value is in a high-
risk range, or if a true lipid concentration is in a high-risk range
but the reported lipid value is in a desirable range [15]. These
misclassifications represent a clinically relevant issue because they
reflect the practically difficult situation with treatment options: to
avoid unnecessary treatment of a patient whose lipid concentration
is in a desirable risk category, or failure to treat a patient whose
lipid concentration is in a high-risk category, and to distinguish
between ‘moderate’ and ‘high-risk’ categories when lipid values are
near a cutpoint [15]. Misclassification as defined here is of greatest
concern because of its potential impact on the patient and

healthcare economics. Using data of the Dutch National EQA-2012
external quality assessment of clinical laboratories, representing all
LDLc and HDLc reagent systems used in The Netherlands, we
simulated the effects of analytical error and hypertriglyceridemia
on HDL-adjusted SCORES and concordance of treatment goals.

2. Materials and methods
2.1. Samples

The Dutch external quality assessment (EQA) organizer, the
Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek
(SKML), runs an accuracy-based EQA scheme for clinical chemistry
analytes including lipids and apolipoproteins. Quality of the Dutch
EQA program has been described previously [16,17]. Briefly, serum
pools are prepared in an ISO 13485:2003 certified production fa-
cility according to CLSI C37-A protocol [18] and value-assigned for
total cholesterol, LDLc and HDLc with CDC Reference Methods in
the Lipid Reference Laboratory in Rotterdam, an international
member of the CDC Cholesterol Reference Method Laboratory
Network (CRMLN). Serum pools are assigned for apolipoprotein B
(apoB) at Leiden University Medical Center (LUMC) and are trace-
able to the WHO-IFCC reference material SP3-08 [19]. The regular
EQA-scheme encompasses the analysis of 24 fresh frozen
commutable samples per year, i.e., one sample has to be analyzed
per two week intervals. About 200 Dutch clinical chemistry labo-
ratories participate in the EQA survey for serum lipids. EQA-test
results are electronically submitted through Qbase to the SKML.

In this paper we consider national EQA-results from three nor-
motriglyceridemic (NTG) serum pools (2012.1F, 2012.2D and
2012.2F) and two hypertriglyceridemic (HTG) serum pools (2012.1D
and 2012.2E), prepared to study the effect of hypertriglyceridemia.
For this purpose, original HTG pools from a selected single donor
with triglycerides (TG) ~ 11 mmol/l were mixed with a NTG serum
pool in order to end up with a total TG of ~7 mmol/l. HTG serum
pool 2012.1D is a fresh frozen pool stored at —84 °C, whereas
2012.2E is a fresh pool. After aliquoting, NTG and HTG (2012.1D)
frozen serum pools were transported to the participating labora-
tories on dry ice and kept frozen at —84 °C until analysis. Lipid and
apolipoprotein measurements, including the target value assign-
ments, of the fresh HTG aliquots (2012.2E) were performed within 2
days upon storage at 4 °C. The participating labs were instructed by
SKML to store and process the specimens correctly.

2.2. Biochemical measurements

Direct HDLc measurements were performed in 2012 with state-
of-the-art homogeneous methods using Accelerator Selective
Detergent (Abbott Diagnostics Division, Beckman Coulter, Siemens
Healthcare Diagnostics), PEG-modified enzymatic reagent (Roche
Diagnostics), immunoinhibition (Olympus), or Vitros reflectometry
slide technology (Ortho Clinical Diagnostics) on automated
instruments from the same manufacturers. In 123 laboratories,
LDLc was calculated with the Friedewald equation
LDLc = cholesterol — HDLc — TG/2.22 (in mmol/l) [20], using direct
HDLc from each manufacturer and cholesterol and TG measure-
ments from the same manufacturer in the calculation. In other lab-
oratories (n = 49), direct LDLc measurements were performed using
a-cyclodextrin sulfate—dextran sulfate Mg?* (Roche) or selective
detergent methods (Abbott, Beckman, Ortho, Siemens) on the same
instruments as for HDLc. In some but not all laboratories (n = 38),
apoB was measured with immunonephelometry (Beckman,
Siemens) or immunoturbidimetry (Abbott, Roche) instruments.
Non-HDLc was not reported by the laboratories but calculated in this
study by subtracting HDLc from total cholesterol values in the EQA
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database. Fig. 1 shows the collected data for HDLc in HTG serum pool
2012.1D and LDLc, non-HDLc, and apoB in HTG pool 2012.2E.

2.3. Simulation of SCORES and treatment goals

From the EQA database, we selected those samples with mean
concentrations close to the high-risk cutpoints for HDLc (men
1.0 mmol/l, women 1.2 mmol/l) and LDLc (2.5 mmol/l) in order to
evaluate risk misclassifications due to measurement variability
(Table 1). To study the effect of hypertriglyceridemia, we compared
serum pools 2012.1D vs. 2012.1F for HDLc, 2012.2D vs. 2012.2E for
LDLc, and 2012.2E vs. 2012.2F for apoB (cutpoint 1.00 g/l). To
examine the concordance of SCORE classification by the various
HDLc measurements, we simulated HDL-adjusted risk SCORE cal-
culations by applying HDL multipliers according to Descamps et al.
[2] considering a fictitious male and female patient with an initial
SCORE of 4% and 3%, respectively (moderate risk). To examine the
concordance of classification into treatment groups, the relative
numbers of LDLc concentrations above the “high-risk” goal
(2.5 mmol/l) were compared among the different direct LDLc
methods and the calculated LDLc values, using the direct HDLc
method from each manufacturer and cholesterol and TG from the
same manufacturer in the calculation.

2.4. Statistics

Laboratory results are summarized by groups that use the same
reagent. Method groups with small data sets <5 were not separately
studied but the data are included in the overall results of the HDLc
and LDLc surveys. Lipid and apolipoprotein data are presented as
medians and ranges. Inter-laboratory imprecision was assessed by
calculating the coefficient of variation (CV) of reported values both
overall and per manufacturer/method group. In our EQA scheme we
gathered test results from single measurements under routine cir-
cumstances; hence, we do not have intra-laboratory imprecision
data of the individual measurements. The mean bias compared to
the “true” target value of measurement was calculated as reported

concentration minus the target concentration, and bias differences
in HTG vs. NTG samples were evaluated by the Wilcoxon test. Dif-
ferences in SCORE classification and treatment goal classification of
the fictitious patients were evaluated with the x? test. Statistical
significance was considered at the level P < 0.05. MedCalc software
was used for the statistical analysis.

3. Results
3.1. HDL-adjusted SCORES

Median HDLc concentrations measured by the various methods
did not show any major differences in the NTG serum (Table 2A).
However, inter-laboratory imprecision caused a variability of HDLc
concentrations reported among the participating laboratories. The
application of HDL-multipliers to a fictitious woman (SCORE 3%) or
man (SCORE 4%) yielded high-risk categories (SCORE >5%) in a
minority of all HDLc measurements (3% and 1%, respectively). Ac-
cording to the HDLc target value measured in the reference labo-
ratory, it is expected that 100% of these men and women would
maintain a moderate risk level below 5%.

The overall HDLc concentration measured in the HTG serum
(mean 0.92 mmol/l, SD 0.11 mmol/l) showed a negative bias
of —0.16 mmol/l (—14.8%) compared to the target value 1.08 mmol/l
(Table 2B). This resulted in higher HDL-adjusted SCORES compared
to the NTG sample (P < 0.0001). Striking inter-method differences
in mean HDLc bias were observed in the HTG sample, —0.03 mmol/I
(—2.7%) (Abbott), —0.07 mmol/l (—6.5%) (Beckman), —0.10 mmol/l
(-9.3%) (Olympus), —0.21 mmol/l (-19.4%) (Roche),
and —0.24 mmol/l (—22.2%) (Siemens). As a consequence, HDL-
adjusted SCORES yielded considerable differences in numbers of
high-risk categories depending on the method (Table 2B).

3.2. Treatment goals

Calculated LDLc obtained with the various direct HDLc data (and
cholesterol and TG measured on the same instruments) showed a
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Fig. 1. SKML EQA data for direct HDLc (A) in the hypertriglyceridemic (HTG) serum pool 2012.1D and direct LDLc (B), non-HDLc (C), and apoB (D) in HTG pool 2012.2E for the
different methodologies. SKML, Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek; EQA, external quality assessment.
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Table 1
Analytical target values of SKML EQA-specimens as assigned with CDC Reference methods for total cholesterol, HDLc, and LDLc. ApoB values are traceable to WHO/IFCC
standards.

EQA-specimen? Consensus mean CDC RMP CDC BQ Consensus mean CDC RMP LUMC Non-HDLc” (mmol/l)

TG (mmol/l) Cholesterol (mmol/l) LDLc (mmol/l) LDLc (mmol/l) HDLc (mmol/l) ApoB (g/1)

2012.1D 6.78 5.16 1.94 1.97 1.08° 0.86 4.08

2012.1F 1.10 4.09 2.62 1.09¢ 0.77 3.00

2012.2D 1.20 3.82 243° 0.89 0.75 293

2012.2E 7.11 5.37 2.46° 240 0.85 0.98° 4.52

2012.2F 1.13 5.13 3.19 1.48 0.92° 3.65

SKML, Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek; EQA, external quality assessment; CDC RMP, Centers of Disease Control reference measurement
protocol; BQ, Beta quantification method; IFCC, International Federation of Clinical Chemistry; LUMC, Leiden University Medical Center.
2 Normotriglyceridemic serum pools prepared according to CLSI C37-A; hypertriglyceridemic serum pools prepared by mixing a CLSI C37-A prepared hypertriglyceridemic

pool with a CLSI C37-A prepared normotriglyceridemic serum pool.

b Expected value calculated by subtracting HDLc RMP from cholesterol RMP values.

¢ Target value of analyte (HDLc, LDLc, apoB) in specimen used in the simulation studies.

wide range due to inter-laboratory imprecision within each method
group (Table 3A). With this median value of 2.40 mmol/l, 33% of
overall calculated values were above the high-risk goal of thera-
peutic intervention (2.50 mmol/l). With direct LDLc measurements
in the NTG sample, 29% of reported values were above high-risk
goal (Table 3B). In the HTG sample, direct LDLc measurements
were overall 57% above high-risk goal (Table 3C). Abbott and
Beckman method means showed considerable positive biases
of +0.39 mmol/l (+15.9%) and +0.34 mmol/I (+13.8%), respectively,
compared to the target value 2.46 mmol/l in the HTG sample,
resulting in 100% of values above treatment goal; Roche direct LDLc
showed a negative mean bias of —0.16 mmol/l (—6.5%) and only 39%
above treatment goal in HTG sera. It should be noted that these
biases were observed in a fresh HTG serum pool 2012.2E, prepared
to exclude freeze-thawing effect on the measurements.

3.3. Secondary treatment goals

Overall mean bias of non-HDLc calculations in the HTG serum
pool 2012.2E (n = 194) was +7.1% (95% CI 5.4—8.4%) compared to
the expected value based on total cholesterol and HDLc reference
measurement procedures. Largest biases were observed with
Roche (mean + 9.1%, 95% CI 7.9—10.3%) and Siemens (mean + 10.8%,

95%Cl 6.4—12.3%). Overall inter-laboratory imprecision of non-
HDLc calculations in the 2012.2E survey was 8.5%; within-method
inter-laboratory CVs were 7.1% (Abbott), 7.6% (Beckman), 6.6%
(Olympus), 7.3% (Roche), and 9.7% (Siemens). We were unable to
simulate misclassifications in non-HDLc-based treatment groups,
because the range of calculated non-HDLc values in HTG sera from
the EQA survey did not encompass the high-risk goal (3.3 mmol/l).

Overall apoB measurements showed comparable imprecision
(8.8%) but less bias (4-1.0%) than non-HDLc calculations in the same
HTG serum pool 2012.2E (Table 4). Overall biases of apoB mea-
surements did not differ between NTG and HTG samples
(P = 0.382). In hypertriglyceridemia, misclassification of high risk
by apoB measurement (29%) was less frequent than by direct LDLc
measurement (57%; x? = 5.80, P = 0.016) (Table 4). However, apoB
data are not representative of the total survey due to the lower
number of reporting laboratories.

4. Discussion

In this study on a Dutch EQA database, representing all LDLc and
HDLc methods used in the clinical laboratories in The Netherlands
and most other countries, we observed marked deviations from the
analytical target value (bias) with measurements in HTG sera. These

Table 2
HDL-adjusted risk scores simulated from direct HDLc methods in patients with initial SCORE 3% (women) and 4% (men).
Method Laboratories (N) HDLc (mmol/l) Imprecision  Bias (mmol/1)° Women Men
H a 0/
median (range)  (%CV) mean (95% C1) SCORE (%) SCORE >5% N (%) SCORE (%) SCORE >5% N (%)
median (range) median (range)
A. NTG sample 2012.1F
Target value 1.09 4.2 4.0
Overall¢ 197 1.10 (0.79—-1.40)  6.1% +0.01 (0.00; +0.02) 42 (3.0-5.4) 6 (3%) 40 (3.6-5.2) 2(1%)
Abbott 18 1.10 (0.79—-1.20)  8.3% 40.01 (—0.05; +0.04) 4.2 (3.6—-5.4) 2(11%) 4.0 (4.0-52) 2 (11%)
Beckman 39 1.04 (0.92-1.20)  4.4% ~0.05 (—0.06; —0.03) 4.2 (3.6-5.1) 2 (5%) 44 (4.0-4.8) 0
Olympus 8 1.05(1.01-1.10)  3.6% —0.04 (-0.07; —0.01) 4.2 (4.2—4.5) 0 4.4 (4.0-4.4) 0
Roche 114 1.11 (0.99-1.30) 4.2% +0.03 (+0.02; +0.04) 3.9(3.3-4.5) 0 4.0 (3.6—4.4) 0
Siemens 14 1.10 (0.95—1.40) 9.6% +0.02 (-0.04; +0.08) 4.2 (3.0-5.1) 2 (14%) 4.0 (3.6—44) 0
B. HTG sample 2012.1D
Target value 1.08 4.2 4.0
Overall® 196 0.90 (0.62—1.25) 10.6% —0.16 (—0.18; —0.15)* 5.1 (42—6.6)* 137 (70%)** 48 (3.6-5.6)* 84 (43%)**
Abbott 18 1.06 (0.98—1.10)  4.3% —0.03 (—=0.05; —0.01) 4.2 (4.2—-4.5) 0 40 (4.0-4.4) 0
Beckman 39 1.00 (0.79—-1.17)  6.5% —0.07 (-0.10; —0.05) 4.5 (4.2—5.4) 9 (23%) 44 (4.0-52) 2 (5%)
Olympus 8 0.98 (0.92—1.03) 2.8% -0.10 (-0.12; —0.08) 4.5 (4.5-5.1) 2 (25%) 4.4 (4.4-4.8) 0
Roche 113 0.87 (0.68—125)  6.6% ~0.21(=0.22; —0.20) 5.1 (4.2—6.0) 111 (98%) 48 (3.6-5.6) 71 (63%)
Siemens 14 0.79 (0.62—1.20) 15.3% -0.24(-034; —0.15) 5.4 (4.2—6.6) 13 (93%) 5.2 (4.0—5.6) 10 (71%)

NTG, normotriglyceridemic; HTG, hypertriglyceridemic.

*P < 0.0001 compared to NTG sample (Wilcoxon test).

**P < 0.0001, x*> = 186.6 (women), 98.2 (men) compared to NTG sample (% test).
@ Inter-laboratory coefficient of variation of reported values.
b HDLc—target HDLc.
¢ Also includes Ortho Clinical Diagnostics HDLc methods.
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Table 3

LDLc values above high-risk treatment goal obtained with calculated and direct LDLc methods in a patient with SCORE >5%.

Method Laboratories (N) LDLc (mmol/l) median (range)

Imprecision (%CV)?

Bias (mmol/1)° mean (95% CI) LDLc >2.50 mmol/I N (%)

A. Calculated LDLc, NTG sample 2012.2D

Target value 243

Overall® 123 2.40 (2.10—3.00)
Abbott 9 2.40 (2.28—2.56)
Beckman 24 2.37 (2.20—2.60)
Roche 70 2.40 (2.26—3.00)
Siemens 8 2.25(2.10—2.50)
B. Direct LDLc, NTG sample 2012.2D

Target value 243

Overall? 49 2.44 (2.28—-2.70)
Abbott 5 2.43 (2.40—-2.46)
Beckman 5 2.43 (2.40-2.70)
Roche 33 2.44 (2.28—-2.55)
C. Direct LDLc, HTG sample 2012.2E

Target value 2.46

Overall? 47 2.40 (2.20-3.19)
Abbott 5 2.88 (2.70—2.90)
Beckman 5 2.80 (2.75-3.19)
Roche 33 2.36 (2.35-2.70)

6.2%
4.3%
4.2%
6.7%
7.5%

3.4%
1.1%
5.0%
3.1%

6.3%
3.0%
6.8%
3.7%

—0.01 (~0.04; +0.03) 40 (33%)
~0.02 (—0.09; +0.06) 4 (44%)
~0.04 (~0.10; +0.02) 4(17%)
+0.03 (—0.02; +0.09) 26 (37%)
~0.16 (—0.42; +0.12) 0

0.00 (~0.02; +0.02) 14 (29%)
10.01 (—0.03; +0.03) 0
+0.01 (—0.05; +0.10) 2 (40%)
0.00 (—0.04; +0.02) 10 (30%)

—0.06 (—0.10;-0.01)* 27 (57%)**
+0.39 (+0.28; +0.49) 5 (100%)
10.34 (—0.29; +0.67) 5 (100%)
~0.16 (~0.20; —0.13) 13 (39%)

NTG, normotriglyceridemic; HTG, hypertriglyceridemic.
*P = 0.007 bias compared to NTG sample (Wilcoxon test).
“P = 0.008 (x? = 7.04) compared to NTG sample (7 test).
2 Inter-laboratory coefficient of variation of reported values.
LDLc—target LDLc.
Also includes Ortho Clinical Diagnostics and Olympus HDLc methods.

b
c
4 Also includes Ortho Clinical Diagnostics, Olympus, and Siemens LDLc methods.

biases exceeded far beyond the U.S. National Cholesterol Education
Program (NCEP) recommendations for LDLc (<4%) and HDLc (<5%)
[21,22]. We simulated that application of HDL-multipliers of SCORE
may yield different risk classifications (moderate vs. high risk)
depending on the laboratory where HDLc has been measured,
particularly in HTG sera. The errors in HDL-c measurements also
affect calculated LDLc, leading to discordant treatment goals even
in NTG sera. Direct LDLc measurements did not improve the
discordances.

Analytical laboratory error can be divided into two components:
random imprecision and systematic bias. Precision refers to the
reproducibility of a particular method while bias refers to a sys-
tematic difference in results between a method and the “true” or
reference value. The discordance between measurements and
target values, observed by us, is caused by both bias (which should
be avoided) and imprecision (which can only be minimized but not
avoided) of the tests. Since the target values are very close to the

Table 4

decision point, one would expect that also an ideal test without any
bias will inevitably cause some misclassifications due to analytical
imprecision even in NTG sera.

Manufacturers of lipid assays certify and standardize their as-
says by comparison with a CRMLN laboratory. The CRMLN labora-
tories employ LDLc and HDLc reference measurement procedures
that are traceable to the CDC reference methods, i.e., beta-
quantification for LDLc and ultracentrifugation/heparin-Mn>*
precipitation/Abell-Kendall cholesterol analysis for HDLc [23,24].
This process ensures that the calibrators and reagents sold by
manufacturers produce test results that are traceable to the CDC
reference methods. Although total cholesterol standardization is
generally viewed as a success, concerns remain about the effec-
tiveness of standardization programs for LDLc and HDLc. An
important limitation of the current CDC standardization protocol is
the lack of testing with specimens from individuals with dyslipi-
demias to better evaluate “real world” assay performance.

ApoB values above high-risk treatment goal obtained with ApoB methods in a patient with SCORE >5%.

Imprecision (%CV)?

Bias (g/1)° mean (95% CI) ApoB >1.00 g/l N (%)

Method Laboratories (N) ApoB (g/1) median (range)
A. NTG sample 2012.2F

Target value 0.92

Overall 38 0.94 (0.82—1.09)

Abbott 6 0.85 (0.82—-0.91)
Beckman 9 0.94 (0.88—1.00)

Roche 14 0.97 (0.83—1.08)

Siemens 9 0.90 (0.83—1.09)

B. HTG sample 2012.2E

Target value 0.98

Overall 38 0.99 (0.84-1.17)
Abbott 6 0.92 (0.84—1.17)
Beckman 9 0.95 (0.93—-1.03)
Roche 14 1.00 (0.85—-1.09)
Siemens 8 1.00 (0.90—-1.10)

8.5% +0.01 (~0.01; +0.04) 3 (8%)

5.0% ~0.07 (~0.11; —0.02) 0

43% 10.02 (~0.01; +0.05) 0

6.8% +0.04 (0.00; +0.08) 2 (14%)

9.9% 40.02 (—0.06; +0.10) 1

8.8% 40.01 (—0.02; +0.04) 11 (29%)*
11.2% 10.01 (~0.15; +0.16)

3.9% ~0.01 (—0.05; +0.02) 1

7.3% +0.03 (~0.03; +0.09) 5 (36%)

8.1% 40.04 (—0.05; +0.10) 3 (38%)

NTG, normotriglyceridemic; HTG, hypertriglyceridemic.

*P = 0.038 (x* = 4.29) compared to NTG sample (% test).
2 Inter-laboratory coefficient of variation of reported values.
> ApoB—target ApoB.
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Of particular concern for the isolation and quantification of LDL
and HDL is the heterogeneity of the lipoprotein fractions. Both LDL
and HDL comprise different subclasses of particles that vary in size,
density, shape, lipid and apolipoprotein composition [5], making
development of specific assays difficult. Direct assays based on
different principles may measure different subclasses of LDL or HDL
that may or may not be equally quantified, depending on the assay
procedure and reagents (non-specificity bias) [5—8]. In contrast to
calibration bias, non-specificity bias cannot be overcome with
better calibration; it is inevitable and varies per sample. Most dis-
crepancies are observed in samples from patients with hyper-
triglyceridemia, mixed dyslipidemia, or other conditions with
altered lipoprotein composition and remodeling such as diabetes
and kidney disease [5—8]. Miller et al. [9,25] and Miida et al. [26]
observed that direct LDLc and HDLc measurements in dyslipi-
demic samples frequently failed to meet the NCEP analytical per-
formance criteria [21,22]. In other studies, direct LDLc methods did
not offer advantage over calculated LDLc in classifying patients into
NCEP risk categories in a dyslipidemic population, when compared
to the reference method [27—29], while non-HDLc calculation and
apoB measurement showed better concordance in risk classifica-
tion [29]. In our EQA database, we were unable to simulate non-
HDLc-based classification in treatment groups because none of
the calculated values in HTG sera encompassed the high-risk goal.

It is important to realize that current guidelines and risk esti-
mation models rely on epidemiological observations using early
precipitation methods for HDLc measurement and LDLc calculation
[5,8]. Therefore, the clinician should be aware that the values
currently reported by clinical laboratories with direct methods are
not measured by the same methods as those of risk cutpoints
recommended in guideline documents. However, considering the
heterogeneity of the lipoproteins, there is no evidence that the
particular LDL and HDL fractions obtained by earlier methods are
better indicators of CVD risk than the fractions obtained by current
methods [5,30—32].

In addition, intraindividual biological variability should be
considered when using lipid methods for risk score classification
[15,33]. The NCEP guidelines recommend that at least 2 serial
specimens, 1 week apart, are necessary to reduce biological varia-
tion. The relative change of the two results can be used to deter-
mine whether additional patient specimens are required because of
unusual high variation. Studies demonstrate that on lipid retesting,
subjects may change one risk category and even two risk categories,
such as from low to high risk, or vice versa [15].

Even when the NCEP recommendations are followed, it remains
probable that misclassifications occur, leading to unnecessary
expensive treatment or lack of appropriate treatment. Difficulties
arise when lipid values are near critical values that determine the
partition between adjacent risk categories, particularly at levels of
SCORE around 5% because the decision of therapeutic intervention
depends on whether the patients are below or above the 5%
threshold of “high risk” [1]. For example, in patients with initial
SCORE 3—4%, an underestimation of HDLc may falsely bring the
SCORE to a value above 5%. In these cases, the clinician may
wrongly recommend drug treatment when lifestyle changes alone
may be a more appropriate action. Conversely, for a true SCORE of
6%, possibilities of falsely reporting a HDL-adjusted SCORE <5% and
thus undertreatment exist because of the wide risk distributions
resulting from analytical error. In a patient at high risk, statin
therapy is recommended if LDLc is >2.50 mmol/l [1]. Hence un-
derestimation or overestimation of the treatment goal LDLc lead to
insufficient or exaggerated LDL reduction, respectively.

From the results of our study, it is clear that direct LDLc
and HDLc measurements should be interpreted as potentially
unreliable when making clinical decisions in patients with

hypertriglyceridemia. However, it is important to emphasize that
we tested a rather severely HTG serum (7 mmol/l). For example in
the Copenhagen City Heart Study less than 2% of the population had
nonfasting TG above 5 mmol/l [34]. Accordingly in the fasting state,
the prevalence will be even lower. Therefore and because most
people with increased risk because of low HDLc have moderate (2—
5 mmol/l) rather than severe hypertriglyceridemia (>5 mmol/l),
the problem of biased measurements and misclassification of CVD
risk and target values is probably smaller than indicated in our
simulation, although risk misclassifications have been reported to
occur in ~20—30% of moderate HTG sera [29].

In clinical practice, LDLc is either estimated by the Friedewald
formula or directly measured with a homogeneous assay. As the
calculation is based on serum cholesterol, TG, and HDLc, it includes
the sum of errors in all three measurements. The calculation is not
valid for specimens with TG >4.5 mmol/l, type III hyper-
lipoproteinemia, or fasting chylomicronemia [30]. Furthermore, if
there is free glycerol in the blood (i.e., in patients with diabetes)
falsely elevated TG may be measured, so the result of calculated
LDLc is probably too low [35]. Errors in HDLc measurement also
affect the calculation of the secondary treatment goal non-HDLc.
Therefore not only LDLc but also non-HDLc goals must be taken
with caution in severe hypertriglyceridemia.

As the EAS/ESC guidelines allow the use of apoB as a secondary
treatment goal, we recommend apoB measurements in case of
severe hypertriglyceridemia and/or invalid Friedewald equation. In
our study the effect of hypertriglyceridemia on apoB measurements
showed less misclassifications than with direct LDLc, although the
data cannot be compared to direct LDLc data because apoB reflects
not only LDL but the total number of atherogenic particles including
very low density lipoproteins (VLDL), intermediate density lipo-
proteins (IDL), and lipoprotein (a) [36]. ApoB is a clearly defined
measurand, and its measurement can be standardized across lab-
oratories worldwide because of the availability of WHO reference
materials and methods [19]. The clinical utility of apoB testing is
similar to LDLc in estimating CVD risk [37—39]. ApoB concentration
has better concordance with LDLc than non-HDLc when deter-
mining the need for lipid-lowering therapy [40,41], but its (cost-)
efficacy to improve the prediction of treatment success beyond
LDLc or non-HDLc needs to be confirmed [42—45].

It is obvious, that even a perfect classification of a patient’s li-
poprotein profile does not guarantee adequate clinical diagnosis
and monitoring for every individual. In clinical practice, the ulti-
mate risk judgment and management should remain the role of the
clinician. Calculated SCORES must always be interpreted in the
context of the patient’s unique situation and underlying risk factors
such as unhealthy lifestyle, obesity, family history, low socio-
economic status, and psychosocial risk factors. Therefore, the de-
cision to change a patient’s risk category on the basis of his or her
HDLc must be based on clinical judgment. Similarly, when making
decisions on initiation of drug therapy on the basis of LDLc,
particularly at borderline LDLc value near the treatment goal, cli-
nicians need to consider with the patient whether the magnitude of
the expected benefit would outweight the disadvantage of statin
therapy, e.g., side-effects, the disutility of taking a pill every day,
and financial burden.

The true evaluation of a risk biomarker, beyond its prognostic
value, relates to its effectiveness in helping the clinician to improve
patient outcome and its cost-effectiveness with social and eco-
nomic healthcare implications [30]. Even modest changes in risk
prediction with a disease as common as CVD translates into thou-
sands of people in Europe that may or may not be treated
adequately. The HDLc and LDLc inter-method differences we
observed are clinically relevant considering the prevalence of risk
scores in a representative Western-European population in which
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the SCORE model can be applied for [46]. Among 6212 non-diabetic
Belgian men and women aged 40—74 years, free of CVD, 14.2% of
the population had a SCORE 3—4% and thus are candidates for HDL-
adjusted risk reclassification [46]. In the same study, 17.8% of the
population had a high-risk SCORE (5—9%) in whom choice of
therapeutic intervention depends on accuracy of LDLc measure-
ment [46]. Because no population cohort and clinical outcome data
are available in our study, we cannot assess the clinical accuracy of
the risk classification simulated with the various methods.

Other lipoprotein variables such as small dense LDL (not inves-
tigated in the present study) may potentially help clinicians to better
manage the risk in the group of HTG subjects [47]. Lipoprotein-
associated phospholipase A2 (Lp-PLA2), a pro-inflammatory
enzyme primarily associated with small dense LDL, is another
promising marker for identifying “hidden” high-risk patients; the
measurement of Lp-PLA2 mass or activity is related specifically to
vascular inflammation and rupture-prone plaque [45,48]. Precise
and fully automated methods are now commercially available for
rapid measurements of small dense LDL and Lp-PLA2 mass and ac-
tivity on routine laboratory instruments, which allow the analysis of
large numbers of samples and facilitate the evaluation of the clinical
utility of these emerging risk markers in ongoing trials. However,
epidemiological studies regarding the added value of small dense
LDL, Lp-PLA2 mass, or Lp-PLA2 activity beyond traditional risk
markers have been inconsistent, likely because analytical methods
and lipoprotein particle definitions have not yet been standardized,
thus complicating the interpretation of studies that have used
different methods [49,50]. This lack of standardization is a major
disadvantage of the new biomarkers compared to apoB measure-
ments [19]. Although there are previous analytical studies that
evaluated methodologies used to measure the emerging biomarkers,
there is no detailed comparison of the different methodologies, as
done in the present study. The present study may represent impor-
tant ground work for future investigations in the field.

5. Conclusion

As pointed out in this simulation study and previously by
Warnick, Nauck, and Rifai [6], “Laboratories supporting lipid clinics
with a high proportion of specimens with atypical lipoproteins
could observe discrepant results on certain specimens that might
confound treatment decisions.” It is vitally important for clinical
laboratories to consider assay reliability and specificity when
choosing methods, particularly in dyslipidemic samples. Addi-
tionally, more efforts are needed to address specificity issues in the
HDLc and LDLc manufacturers’ certification programs offered by
CDC and the CRMLN reference laboratories. As a patient’s HDLc and
LDLc concentrations depend on the method chosen by the labora-
tory where it is measured, therapeutic decision cutpoints and
multipliers of risk may not be considered universally applicable.
This should be taken into account when deciding to treat a patient
with lipid-lowering drug therapy for life.
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