The practical issues in Type 2 diabetes management - Pharmacogenomic considerations

Prof. Dr Sabina Semiz
Faculty of Pharmacy
University of Sarajevo

October 26, 2014.
Global Projections for the Diabetes Epidemic: 2010-2030 (millions)

1980-1990 by 18%.

World
2010 = 285 million
2030 = 438 million
Increase 54%

2011 - a staggering 366 million
2030 – 552 million

Dr Paul Zimmet, Baker IDI Heart and Diabetes Institute, Melbourne

Diabesity

- Obesity is driving the escalating diabesity epidemic: The biggest epidemic in human history.
- Continues to rise exponentially globally.
- Ageing, lifestyle change, and urbanisation have been targeted as the main drivers.
- By 2020, is set to bankrupt the economies of many nations unless action is taken.

Pharmacogenetics is the study of interindividual variations in DNA sequence related to drug response.

According to DUR/CRNP/307008-7; this is the paper on the anatomy of pharmacogenetics.
Pharmacogenetic Tests

- If genetic testing could be employed to predict treatment outcome, appropriate measures could be taken to treat T2D more efficiently and avoid extra costs for treating side-effects.
- Promote safe and cost-effective individualized diabetes treatment.
Pharmacogenomics in Diabetes

- T2D patients are often treated with more than one drug, including:
 - oral antidiabetic drugs (OAD), e.g., metformin and sulfonylureas (SU).
 - drugs used to treat diabetic complications, such as dyslipidemia and hypertension (e.g., statins).
Oral Antidiabetic Drugs

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Examples</th>
<th>Principal Mode of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguanides</td>
<td>Metformin</td>
<td>Decrease hepatic glucose production</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>Rosiglitazone, Pioglitazone</td>
<td>Improve peripheral insulin sensitivity</td>
</tr>
<tr>
<td>Alpha-glucosidase inhibitors</td>
<td>Acarbose, Miglitol</td>
<td>Delay carbohydrate absorption</td>
</tr>
<tr>
<td>Sulfonylureas</td>
<td>Glimepiride, Glipizide, Glyburide, Gliclazide</td>
<td>Stimulate insulin secretion from pancreatic beta cells</td>
</tr>
<tr>
<td>Short-acting insulinotropic agents</td>
<td>Repaglinide, Nateglinide</td>
<td>Stimulate insulin secretion from pancreatic beta cells</td>
</tr>
</tbody>
</table>
Sites of Action for Oral Therapies for Type 2 Diabetes

Pancreas
- Impaired insulin secretion

Gut
- \(\alpha\)-Glucosidase inhibitors
 - Acarbose (Precose)
 - Miglitol (Glyset)
 - Pramlintide
 - Exenatide

Liver
- ↑ Hepatic glucose output
- ↓ Biguanide
- ↓ TZDs

Adipose
- ↑ Biguanide
- ↑ TZDs

Muscle
- ↑ Glucose uptake
- ↑ Metformin (Glucophage)

↑ Sulfonylureas
- Glipizide (Glucotrol)
- Glyburide (DiaBeta, Micronase, Glynase)
- Glimepiride (Amaryl)

↑ Repaglinide (Prandin)

↑ Nateglinide (Starlix)
Pharmacogenomics in Diabetes

- Early stage of investigation.
- Although benefits from a personalized diabetes care are well established in patients with certain monogenic forms of diabetes, individualized treatment in more common polygenic forms of diabetes are also anticipated.
- GWA studies – identity of gene variants that impact on treatment response or side effects:
 - Severe hypoglycemia with sulfonylureas
 - Severe gastro-intestinal intolerance to metformin
 - Heart failure with thiazolidinediones
Pharmacogenomics in Diabetes

- The main objective is to improve drug therapy of diabetic patients.
- Analyze an association of genetic variations in:
 - drug-metabolizing enzymes (DME)
 - drug-transporters (DT)
 - specific drug targets with T2D treatment outcomes
Pharmacogenomics

DRUG TARGETS

DRUG TRANSPORTERS

DRUG METABOLIZING ENZYMES

PHARMACODYNAMICS

PHARMACOKINETICS

Variability in Efficacy/Toxicity

Johnson JA. Trends in Genetics 2003: 660-666
Pharmacogenetics in Diabetes

• Pharmacokinetic

• Pharmacodynamic
 – \textit{TCF1} (encoding HNF1\textsubscript{\alpha}) mutations - sulfonylureas as the first-line antidiabetic therapy for these patients.
 – \textit{PPAR}\textsubscript{\gamma} – variation associated marginally with changes in insulin sensitivity and response.
Summary of genetic variations involved in PGx of:

- Sulfonylureas
- Thiazolidinediones
- Meglitinides
- Biguanides
SULPHONYLUREAS

• KATP channel is essential for glucose - stimulated insulin secretion from pancreatic β-cells, modulates glucose uptake into skeletal muscle, glucose production and release from the liver.

• KATP channels are assembled from:
 – Kir6.2 potassium ion channel - encoded by *KCNJ11*
 – Sulphonylurea receptor 1 (SUR1) regulatory subunit - encoded by *ABCC8* gene
• SNPs of the genes encoding KATP channel are related to the efficacy of secretagogue drugs.

• A common Glu23Lys polymorphism (E23K) in \textit{KCNJ11} is associated with an increased risk of SU therapeutic failure.

• \textit{KCNJ11} variations have been associated with altered response to gliclazide and glibenclamide.

• Interestingly, the most promising gene variants affecting the SU response are those involved in drug pharmacodynamics, such as \textit{TCF7L2} that encodes a transcription factor Tcf-4, involved in the regulation of cellular proliferation and differentiation.
Common genetic variations associated with OAD therapy outcomes

- SU
- Meglitinides
- Metformin
- TZDs

Genes:
- KCNJ11
- TCF7L2
- KCNQ1
- ABCC8
- CYP2C9
Analysis of CYP2C9*2, CYP2C19*2, and CYP2D6*4 polymorphisms in patients with type 2 diabetes mellitus

Sabina Semiz¹, Tanja Dujic¹, Barbara Ostanek², Besim Prnjavorac¹³, Tamer Bego¹, Maja Malenica¹, Janja Marc² and Adlija Causevic¹

¹ Department for Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Koševska 4 (Čekaluša 90), 71000 Sarajevo, Bosnia and Herzegovina. ² Department for Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, SI-1000 Ljubljana, Slovenia. ³ General Hospital Tesanj, Brace Pobrica 17, 74260 Tesanj, Bosnia and Herzegovina.
Analysis of \textit{CYP3A4*1B} and \textit{CYP3A5*3} polymorphisms in population of Bosnia and Herzegovina

Sabina Semiz1, Tanja Dujić1, Barbara Ostanek2, Besim Prnjavorac1,3, Tamer Bego1, Maja Malenica1, Barbara Mlinar2, Janja Marc2, Adlija Čaušević1

1Department for Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
2Department for Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia, 3General Hospital Tesanj, Tesanj, Bosnia and Herzegovina.
Meglitinides (glinides)

- A class of short-acting insulin secretagogues that act by binding to β-cells and closing KATP channel to stimulate insulin release.
- This is similar MOA of the sulfonylureas and both, meglitinides and SU, bind to the SUR1 subunit to inhibit channel activity.
- Due to their short action, repaglinide and nateglinide have a lower risk to induce hypoglycemia than SU.
- Furthermore, meglitinides offer an alternative OAD agent of similar potency to metformin, and may be indicated where side effects of metformin are intolerable or where metformin is contraindicated.
PG of Meglitinides

- **SLCO1B1** gene encodes the organic anion-transporting polypeptide 1B1 (OATP1B1) that transports repaglinide into hepatocytes.
 - Major factor that significantly affects the repaglinide pharmacokinetics, consistent with an enhanced hepatic uptake by OATP1B1.
Common genetic variations associated with OAD therapy outcomes

- Meglitinides
 - SLCO1B1
 - SLC30A8
 - MDR1
 - KCNQ1
 - KCNJ11
 - TCF7L2
 - CYP2C9

- TZD
 - NAMPT
 - CYP2C9
Thiazolidinediones (TZDs)

- Activate their molecular target PPARs (peroxisome proliferator - activated receptors).
- Bind with greatest specificity for PPARγ to promote adipogenesis and fatty acid uptake.
- By reducing circulating fatty acid levels and lipid availability in liver and muscle, these drugs improve the patients’ sensitivity to insulin and reduce hyperglycemia.
PG of TZDs

- Variation in PPAR_γ would likely affect response to TZD and this was suggested in a recent study that analyzed pioglitazone response.
- Recently, several additional gene variants have been also associated with the TZD therapy outcomes, including adiponectin, leptin, resistin, and TNF-α that are of a particular interest due to their important role in insulin resistance.
Common genetic variations associated with OAD therapy outcomes

- **SU**
 - KCNJ11
 - ABCC8
 - KCNQ1
 - TCF7L2
 - CYP2C9

- **Meglitinides**
 - SLCO1B1
 - SLC30A8
 - MDR1
 - KCNQ1
 - KCNJ11
 - TCF7L2
 - NAMPT
 - CYP2C9

- **Metformin**
 - PPARG
 - PGC1α
 - Adiponectin
 - Leptin
 - PTPRD
 - TNFα
 - CYP2C8

- **TZDs**
First-line drug used to treat newly diagnosed T2D

- Antiglycemic efficacy
- Prevention
- Treatment
- Insulin sensitizing
- Anti-inflammatory
- Attenuation of metabolic syndrome
- Modifies endothelial dysfunction
- Modifies non-alcoholic fatty liver disease
- Lipid-lowering benefits
- Cost effective
- Weight neutral or reduction
- Anti-neoplastic potential
- Cardiovascular protection
Pharmacogenomics of Metformin

- The glycemic response to metformin is highly variable.
- About 35-40% of patients receiving the drug do not achieve acceptable control of glucose levels.
- Associations with glucose-lowering effect of metformin in the at-risk population were found in:
 - Drug target gene - *STK11*
Common genetic variations associated with OAD therapy outcomes

<table>
<thead>
<tr>
<th>SU</th>
<th>Meglitinides</th>
<th>TZDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNJ11</td>
<td>SLC10A8</td>
<td>SLC22A1</td>
</tr>
<tr>
<td>ABCC8</td>
<td>MDR1</td>
<td>SLC22A2</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>KCNJ11</td>
<td>SLC47A1</td>
</tr>
<tr>
<td>TCF7L2</td>
<td>TCF7L2</td>
<td>SLC47A2</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>NAMPT</td>
<td>ATM</td>
</tr>
</tbody>
</table>

- SLC22A1
- SLC22A2
- SLC47A1
- SLC47A2
- ATM

- Resistin
- Adiponectin
- Leptin
- TNFα
- CYP2C8
Metformin Pharmacokinetic Pharmacogenomics

Metformin in the Gut Lumen
- SLC29A4
- SLC22A3

Enterocyte
- SLC22A1

Bloodstream
- Metformin
- SLC29A4
- SLC22A3

Hepatocyte
- SLC22A3
- SLC22A1

Bile Duct
- SLC47A1

Renal Tubular Lumen
- SLC47A2
- SLC47A1
- SLC22A2

Diabetes Volume 63, August 2014
Pharmacodynamic effects of metformin
Pharmacogenomics of Metformin

<table>
<thead>
<tr>
<th>Gene</th>
<th>Note</th>
<th>Summary of effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC22A1</td>
<td>OCT1</td>
<td>Decreased function alleles linked to reduction in metformin effect on initial A1C and lipid responses; incidence of diabetes</td>
<td>18, 40, 41, 52–56</td>
</tr>
<tr>
<td>SLC22A2</td>
<td>OCT2</td>
<td>No associations with clinical outcomes, only changes in metformin PK reported</td>
<td></td>
</tr>
<tr>
<td>SLC22A3</td>
<td>OCT3</td>
<td>No associations with clinical outcomes, only changes in metformin PK reported</td>
<td></td>
</tr>
<tr>
<td>SLC47A1</td>
<td>MATE1</td>
<td>Increased metformin response to A1C; incidence of diabetes</td>
<td>18, 42, 52</td>
</tr>
<tr>
<td>SLC47A2</td>
<td>MATE2</td>
<td>Poorer response to metformin; changes in A1C</td>
<td>42, 43</td>
</tr>
<tr>
<td>SRR</td>
<td>Serine racemase</td>
<td>Associated with changes in FPG, PPG, and CHO</td>
<td>57</td>
</tr>
<tr>
<td>ATM</td>
<td>Serine/threonine kinase; SNP in large LD block with 6 other genes</td>
<td>Metformin treatment success by A1C</td>
<td>29–31</td>
</tr>
<tr>
<td>LKB/STK11</td>
<td>AMPK upstream kinase</td>
<td>Decrease in ovulation in women with polycystic ovarian syndrome on metformin; incidence of diabetes</td>
<td>18, 58</td>
</tr>
<tr>
<td>PRKAA1, PRKAA2, PRKAB2</td>
<td>AMPK subunits</td>
<td>Incidence of diabetes</td>
<td>18</td>
</tr>
<tr>
<td>ABCC8-KCNJ11</td>
<td>Subunit of β-cell potassium channel</td>
<td>Incidence of diabetes</td>
<td>18</td>
</tr>
</tbody>
</table>

CHO, cholesterol; FPG, fasting plasma glucose; LD, linkage disequilibrium; PK, pharmacokinetics; PPG, postprandial plasma glucose.
Study: Pharmacogenomics of Metformin Treatment

- Patients are recruited prior to development of an overt diabetes (prediabetes) and prior to treatment.
- Thus, newly diagnosed diabetic patients are closely monitored for the drug effectiveness and development of adverse outcomes.
Research projects:

Pharmacogenetic factors associated with optimal therapy of Type 2 Diabetes.

Personalized Therapy of Type 2 Diabetes Through European Research Network

Semiz, S. Grant for EU-FP7 project preparation by the Council of Ministers BH, 2013-2014.
Study: Pharmacogenomics of Metformin Treatment

- Characterize genetic variations of:
 - DT (e.g., OCT, MATEs)
 - drug targets (e.g., AMPK, ATM)
- associated with T2D treatment outcomes:
 - HbA1c
 - FPG levels
 - Side-effects (GI)
- Explore genotype-phenotype associations.
Current Study Status

• Recruited about **100 T2D patients on metformin treatment** and collected blood samples.
• Large-scale phenotype are being collected, such as:
 – Hb1Ac, FPG, insulin, BP, total and HDL cholest.
 – anthropomorphomic measures - BMI, waist circum.
• in following time intervals:
 – prior to therapy with metformin
 – 3, 6 months
 – 12 months
• Explore genotype-phenotype associations
• Compliance with therapy,...
• Expect to finalize preliminary study by the end of 2014.
CONCLUSIONS

- PGx has the potential to promote safe and cost-effective individualized diabetes treatment.
- PGx studies on diabetes treatment performed to date are small and inadequately replicated, and must be further tested in adequately designed and rigorously conducted clinical trials.
- With recent scientific and technological advances, PGx has a great potential to yield therapeutic advances leading the way towards personalized diabetes care.
Targeted prescription of medicine: applied pharmacogenomics

Today

empirical prescription

“One drug fit all”

Drug A

Drug B

Drug C

Drug D

Individual physician experience
Cost: time, money & well-being

Future

Rational prescription

“individualized”

Patient genetic’s profiles

Drug A

Drug B

Drug C

Drug D

Informed physician diagnosis
Saving: time, money & patient’s life
"Here's my sequence..."
Acknowledgements

University of Sarajevo
Faculty of Pharmacy
• Adlija Čaušević
• Tanja Dujić
• Tamer Bego
• Maja Malenica
• Zelija Velija-Ašimi

CCUS

Leif Groop
LUDC, Malmo, Sweden
• B. Prnjavorac
General Hospital Tešanj

• National grant from the Federal Ministry for Education & Science BH, 2012-2013.
• Grant for EU-FP7 project preparation from the Council of Ministers BH (MCA), 2009; 2010, 2014.
A CENTURY OF PEACE after THE CENTURY OF WARS