Are regulation driven-performance criteria still acceptable?

Institut für Laboratoriumsmedizin
Matthias Orth
matthias.orth@vinzenz.de Tel. + 49 711 6489 2760
www.laborstuttgart.de

Regulation and performance criteria

Experiences with “RiliBÄK“ as example of regulation driven-performance criteria

new challenge to laboratory medicine: Health Technology Assessment (HTA)

Performance criteria in companion diagnostics and DTC/DAT

Conclusions
Is our focus at the right target?

Risks of Red Blood Cell Transfusion

How do others rate our performance in laboratory medicine services?

<table>
<thead>
<tr>
<th>Laboratory Service Category*</th>
<th>Excellent, % (No.)</th>
<th>Good, % (No.)</th>
<th>Average, % (No.)</th>
<th>Below Average, % (No.)</th>
<th>Poor, % (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality/reliability of test results</td>
<td>45.6 (1533)</td>
<td>42.9 (1623)</td>
<td>9.8 (416)</td>
<td>1.3 (56)</td>
<td>0.4 (15)</td>
</tr>
<tr>
<td>Staff courtesy</td>
<td>50.4 (2206)</td>
<td>47.1 (1523)</td>
<td>2.7 (98)</td>
<td>2.2 (89)</td>
<td>0.6 (25)</td>
</tr>
<tr>
<td>Accessibility of pathologist</td>
<td>51.2 (1023)</td>
<td>42.1 (1301)</td>
<td>6.7 (408)</td>
<td>2.1 (74)</td>
<td>0.7 (23)</td>
</tr>
<tr>
<td>Accessibility of laboratory manager</td>
<td>46.5 (1524)</td>
<td>36.0 (1178)</td>
<td>13.7 (439)</td>
<td>2.7 (87)</td>
<td>1.2 (38)</td>
</tr>
<tr>
<td>Phlebotomy services</td>
<td>37.8 (1113)</td>
<td>43.7 (1515)</td>
<td>14.4 (503)</td>
<td>3.1 (106)</td>
<td>1.0 (35)</td>
</tr>
<tr>
<td>Test menu adequacy</td>
<td>36.7 (1427)</td>
<td>46.9 (1826)</td>
<td>14.0 (543)</td>
<td>1.7 (56)</td>
<td>0.7 (26)</td>
</tr>
<tr>
<td>Accessibility of laboratory staff</td>
<td>47.3 (1913)</td>
<td>36.5 (1478)</td>
<td>12.4 (500)</td>
<td>2.7 (111)</td>
<td>1.1 (44)</td>
</tr>
<tr>
<td>Courier services</td>
<td>38.0 (1030)</td>
<td>41.1 (1124)</td>
<td>15.6 (420)</td>
<td>3.2 (87)</td>
<td>2.1 (57)</td>
</tr>
<tr>
<td>Routine test TAT</td>
<td>33.5 (1380)</td>
<td>44.7 (1653)</td>
<td>17.0 (704)</td>
<td>3.4 (142)</td>
<td>1.4 (56)</td>
</tr>
<tr>
<td>Laboratory management responsiveness</td>
<td>40.4 (1380)</td>
<td>40.1 (1372)</td>
<td>14.4 (492)</td>
<td>3.6 (123)</td>
<td>1.5 (51)</td>
</tr>
<tr>
<td>Inpatient stat test TAT</td>
<td>34.7 (1772)</td>
<td>41.7 (1338)</td>
<td>15.0 (493)</td>
<td>3.4 (122)</td>
<td>2.2 (71)</td>
</tr>
<tr>
<td>Critical value notification</td>
<td>44.3 (1833)</td>
<td>39.3 (1624)</td>
<td>11.4 (470)</td>
<td>3.1 (128)</td>
<td>1.0 (39)</td>
</tr>
<tr>
<td>Clinical report format</td>
<td>33.7 (1396)</td>
<td>46.0 (1903)</td>
<td>19.5 (644)</td>
<td>3.1 (127)</td>
<td>1.7 (71)</td>
</tr>
<tr>
<td>Outpatient stat test TAT</td>
<td>33.6 (1720)</td>
<td>40.3 (1407)</td>
<td>17.4 (605)</td>
<td>6.2 (216)</td>
<td>2.6 (89)</td>
</tr>
<tr>
<td>Exotic test TAT</td>
<td>17.1 (629)</td>
<td>38.0 (1398)</td>
<td>32.9 (1232)</td>
<td>0.9 (32)</td>
<td>3.1 (116)</td>
</tr>
</tbody>
</table>

* TAT indicates turnaround time.

4329 respondents

responsibility for processes out of the laboratory

Arch Pathol Lab Med. 2009;133:38–43
Is our focus at the right target?

Quality criteria to be covered by regulation

- performance criteria for daily routine quality controls
- performance criteria for EQAS
- performance criteria for tests with numeric as well as for alpha-numeric results
- use of reference method values and/or method specific values for EQAS
- optional: minimum time interval / maximum frequency for ordering a specific test
Experiences with “RiliBÄK” as example of regulation driven-performance criteria

Legal background behind RiliBÄK

- EU IVD directive
- German Medical Devices Act ("Medizinproduktgesetz")
- German Medical Devices Operator Ordinance ("Medizinproduktebetreiberverordnung")
- German Medical Association ("Bundesärztekammer")
- RiliBÄK

every professional employing laboratory tests in human healthcare is obliged to comply to all regulations specified in RiliBÄK

part A (the description of a quality management system closely resembling DIN EN ISO norm 15189 as a framework for structural quality)

part B with extensive appendices covering analytical performance goals in internal as well as in external quality programs in tabulated form for 84 selected quantitative and 50 semiquantitative tests in hematology, hemostaseology, clinical chemistry, TDM, endocrinology, serology in different matrices (such as serum, plasma, whole blood, urine, cerebrospinal fluid) as well as for genetical and microbiological tests and sperm analysis
Selection of quality control material based on RiliBÄK specifications (!) (range, target value assignment)

Calculation of root mean square of measurement deviation (RSMD)

\[
\% \text{RMSMD} = \sqrt{\frac{\text{Bias}^2 + \text{SD}_{\text{TV}}^2}{\text{TV}}}
\]

- SD_{TV}: Standard deviation
- Bias: Difference of observed mean from target value (TV)
- K: Statistical coverage factor (1 for metric, 3 to calculate specification)
- TV: Target value

Procedure for non-tabulated tests with new control samples (new control cycle)

Process for repeated failures of column 3 at the end of control cycles ("event" according to §2 Medical Products Safety Plan Ordinance)

Open discussion whether different analytical performance standards might be acceptable between real laboratory tests and point of care tests

empirical: $\delta_p / \sigma_p = 1.7$
• instant assessment of analytical control samples and detection of critical deviations by operator
• automatic calculation of RMSMD is integrated into all major lab information systems
• drawback of RMSMD: no information whether systematic (i.e., bias) or random (i.e. imprecision) issues have caused the violation
<table>
<thead>
<tr>
<th>Assay</th>
<th>Unit</th>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>CV (%)</th>
<th>All Site Mean</th>
<th>% INRSD</th>
<th>% INRSD Acceptable Limit</th>
<th>Significance</th>
<th>% TEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>32</td>
<td>0.34</td>
<td>0.024</td>
<td>7.0</td>
<td>0.3</td>
<td>11.7</td>
<td>23.1</td>
<td>2.42</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>32</td>
<td>5.20</td>
<td>0.252</td>
<td>4.8</td>
<td>5.0</td>
<td>11.7</td>
<td>23.1</td>
<td>2.42</td>
<td>23</td>
</tr>
<tr>
<td>Alpha Fetoprotein (DFI36)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>31</td>
<td>2.0</td>
<td>0.21</td>
<td>10.0</td>
<td>7.1</td>
<td>3.1</td>
<td>17.9</td>
<td>7.1</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>31</td>
<td>8.60</td>
<td>2.10</td>
<td>24.6</td>
<td>2.8</td>
<td>6.5</td>
<td>23.1</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>CA 19-9 (K51)</td>
<td>ml/mL</td>
<td>Level 1</td>
<td>30</td>
<td>17.1</td>
<td>2.34</td>
<td>13.9</td>
<td>19.0</td>
<td>4.6</td>
<td>19.0</td>
<td>4.6</td>
<td>48.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>50.1</td>
<td>4.1</td>
<td>8.2</td>
<td>50.0</td>
<td>11.6</td>
<td>48.3</td>
<td>11.6</td>
<td>48.3</td>
</tr>
<tr>
<td>PSA (PSA)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>31</td>
<td>12.8</td>
<td>2.1</td>
<td>16.1</td>
<td>18.8</td>
<td>7.2</td>
<td>14.9</td>
<td>4.5</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>31</td>
<td>32.7</td>
<td>2.3</td>
<td>7.3</td>
<td>32.7</td>
<td>7.3</td>
<td>14.9</td>
<td>4.5</td>
<td>24.7</td>
</tr>
<tr>
<td>Cortisol (K15)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>32</td>
<td>46.7</td>
<td>2.2</td>
<td>4.5</td>
<td>46.7</td>
<td>4.5</td>
<td>14.9</td>
<td>4.5</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>32</td>
<td>103.6</td>
<td>6.3</td>
<td>5.9</td>
<td>103.6</td>
<td>5.9</td>
<td>14.9</td>
<td>5.9</td>
<td>26.9</td>
</tr>
<tr>
<td>Estradiol (K72)</td>
<td>pg/mL</td>
<td>Level 1</td>
<td>32</td>
<td>54.3</td>
<td>4.8</td>
<td>8.9</td>
<td>54.3</td>
<td>8.9</td>
<td>22.8</td>
<td>3.1</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>32</td>
<td>480.9</td>
<td>4.8</td>
<td>10.0</td>
<td>480.9</td>
<td>10.0</td>
<td>22.8</td>
<td>3.1</td>
<td>26.9</td>
</tr>
<tr>
<td>Progesterone (K77)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>24</td>
<td>9.0</td>
<td>0.86</td>
<td>9.7</td>
<td>9.0</td>
<td>6.5</td>
<td>17.8</td>
<td>6.5</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>24</td>
<td>2.38</td>
<td>1.02</td>
<td>4.3</td>
<td>2.38</td>
<td>4.3</td>
<td>17.8</td>
<td>4.3</td>
<td>26.9</td>
</tr>
<tr>
<td>Ferritin (K15)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>30</td>
<td>16.2</td>
<td>1.0</td>
<td>6.2</td>
<td>16.2</td>
<td>6.2</td>
<td>13.5</td>
<td>3.3</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>401.7</td>
<td>16.1</td>
<td>4.0</td>
<td>401.7</td>
<td>4.0</td>
<td>13.5</td>
<td>3.3</td>
<td>21</td>
</tr>
<tr>
<td>FSH (K75)</td>
<td>UI/L</td>
<td>Level 1</td>
<td>30</td>
<td>320.5</td>
<td>16.1</td>
<td>5.0</td>
<td>320.5</td>
<td>5.0</td>
<td>13.5</td>
<td>3.3</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>5.2</td>
<td>0.1</td>
<td>2.1</td>
<td>5.2</td>
<td>2.1</td>
<td>13.5</td>
<td>2.1</td>
<td>21</td>
</tr>
<tr>
<td>Free T3 (K96)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>30</td>
<td>37.0</td>
<td>1.2</td>
<td>3.2</td>
<td>37.0</td>
<td>3.2</td>
<td>15.5</td>
<td>5.8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>4.2</td>
<td>0.6</td>
<td>15.5</td>
<td>4.2</td>
<td>15.5</td>
<td>15.5</td>
<td>15.5</td>
<td>21</td>
</tr>
<tr>
<td>Free T4 (K45)</td>
<td>ng/mL</td>
<td>Level 1</td>
<td>30</td>
<td>9.3</td>
<td>0.6</td>
<td>6.5</td>
<td>9.3</td>
<td>6.5</td>
<td>14.5</td>
<td>4.4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>7.1</td>
<td>0.1</td>
<td>1.4</td>
<td>7.1</td>
<td>1.4</td>
<td>14.5</td>
<td>1.4</td>
<td>24</td>
</tr>
<tr>
<td>TSH (K62)</td>
<td>pg/mL</td>
<td>Level 1</td>
<td>30</td>
<td>0.177</td>
<td>0.004</td>
<td>2.3</td>
<td>0.177</td>
<td>2.3</td>
<td>14.5</td>
<td>4.4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
<td>30</td>
<td>0.234</td>
<td>0.009</td>
<td>3.9</td>
<td>0.234</td>
<td>3.9</td>
<td>14.5</td>
<td>3.9</td>
<td>24</td>
</tr>
</tbody>
</table>

Figure 5. Six Sigma Method Performance Comparison of BioRad (○) and Technopath (●) controls for AALT.

Figure 6. Six Sigma Method Performance Comparison of BioRad (○) and Technopath (●) controls for Chloride.
Experiences with “RiliBÄK” as example of regulation driven-performance criteria

- Alkaline Phosphatase: RMSD reduced from 13% to 11%; EQAS reduced from 21 to 18%
- CA 19-9 replaced by CA 15-3
- FSH added
- Lipase deleted
- pCO2: goals made more complex (2 levels)
- FT4: goals simplified (1 level)
- Transferrin: RMSD reduced from 9.5% to 8.0%; EQAS reduced from 15% to 12%
- FT3: RMSD reduced from 14.5% to 13.0%; EQAS reduced from 24% to 20%
- Vancomycin: EQAS reduced from 21% to 18.0%

Outcomes studies: health technology assessment (HTA)

A multidisciplinary process firmly rooted in research and the scientific methods that summarizes information about medical, social, economic and ethical issues related to the use of a health technology.

It is expected that with HTA the risk of implementing measures that negatively affect patient outcomes is reduced.

In general HTA is being performed by formally independent institutions employing scientific methods.

In most countries, the paramount aim of HTA is at decision-making in health politics and healthcare budgeting.

The concept behind HTA is a prohibition of use of a certain technology unless permission is granted (positive list).

Current focus on HTA for introducing new technologies is a severe threat to innovations in laboratory medicine as well as in using established laboratory tests!
General challenges of HTA

- evidence of efficiency gains and improvements in health remains valid when different definitions of health outcomes used?
- often crude measurements such as life expectancy, not considering quality of years of life gained
- besides parameter studied influence of numerous factors on health outcomes
- time lag between the introduction of a new technological solution and its impact on health outcomes

‘false savings’ because they may lead to increased costs or other unintended consequences in the long term (e.g. in screening tests with high rates of false positives followed by extensive diagnostic procedures or even invasive treatment measures)

‘undervalued positive effects’ of new technologies when outcomes can be detected only after long periods of observation such as in screening programs of low grade types of cancer or of risk markers for slowly progressing diseases such as coronary heart disease

Challenges of HTA for diagnostic procedures

Qualifying performance testing in the medical laboratory by HTA is a yet unresolved challenge

General concept of laboratory medicine which only delivers data to the attending physicians such as the presence or absence of a certain disease. Most meta-analyses for diagnostic test studies still pool diagnostic sensitivity and specificity values only

diagnostical and analytical performance goals of a certain laboratory test might even have to be defined for different clinical situations and have to be revised in specified intervals thereafter

Evidence on current practice indicates that clinical practice has changed to such a degree that the original research question is no longer relevant to UK practice” Czoski-Murray, C., M. Lloyd Jones, et al. (2012). Health Technol Assess. 16(50): i-xvi, 1-162
The evaluation of diagnostics differs from the evaluation of treatments, diagnostic tests have few direct outcomes.

Most outcomes follow from treatments that are either initiated or not initiated based on the results of the tests (Surrogate markers!).

Tests are frequently done in conjunction with other tests or measurements, and it is the composite of the series of tests that is used in clinical decision-making.

Only very rarely do studies of diagnostic tests follow patients through treatment to final outcomes. Also, evaluation of diagnostics usually requires that the clinical management process is described and that the effects of that process are known or assumed. If the effects of treatment are not known, analyses can be performed, but the validity of the results will be less certain in ways that may not be completely specifiable. This increases the uncertainty with which decisions can be made on use of diagnostic technologies.

In statistics, test accuracy means the proportion of test results that are correct. This is not a useful definition for the purposes of this document, because a test may be incorrect in more than one way and for more than one reason.

HTA and testing intervals

HTA adds further level of complexity to concept of quality indicators and performance goals in the medical laboratory that not only analytical quality indicators have to be agreed on for tests but also for:

• testing intervals

and for:

• sequence of tests (screening/confirmation testing)
Inappropriate Requesting of Glycated Hemoglobin (Hb A\textsubscript{1c}) Is Widespread: Assessment of Prevalence, Impact of National Guidance, and Practice-to-Practice Variability

Challenges of HTA for diagnostic procedures

Disease prevalence in the population under question
availability of other diagnostic methods
cost structure of the health system in this population
acceptance of monetary gain of certain medical procedure not equally accepted in different nations.
E.g., concept of costs per QUALY is accepted in some countries (with wide differences among countries) but is highly defeated and even considered to be unethical in Germany

In companion diagnostics, a certain test result of a (new) laboratory test is the prerequisite for prescription of drug

For regulation of the drug, the approval of the laboratory test is sine qua non
Substantial concern that HTA of new laboratory tests is shifted from laboratory medicine to drug companies (FDA, EMEA), (setting performance goals for a blood count should therefore also be done by drug companies?)

Khoury, J. D. and D. V. T. Catenacci (2014). Arch Pathol Lab Med

25
Challenges by DTC/DAT

EU
Direct to consumer testing (DTC)/Direct Access Testing (DAT):
no quality criteria at all have to be followed if laboratory tests are performed by non-health care professionals allowing a free movement of services under the consumer rights directive 2011/83/EU

USA
A laboratory is defined to be a facility that performs certain testing on human specimens in order to obtain information that can be used for the diagnosis, prevention, or treatment of any disease or impairment of a human being

CLIA regulations and standards do not differentiate between facilities performing DAT and facilities performing provider ordered testing. All facilities must obtain appropriate CLIA certificate prior to conducting patient testing, including DTC/DAT

Conclusions
Current focus on HTA by health care policy makers may pose a severe threat to the introduction of new laboratory for patient use

Regulation-driven performance criteria for medical laboratory testing, even when based on analytical performance goals low in hierarchy - might be a promising alternative to HTA if widely-accepted both by medical professionals and from the health-economical network

Regulation-driven performance criteria have to be constituted by medical professionals
In case of referrals to DIN EN ISO norms, federal organization of health care system has to be respected

Performance criteria should be established for a wide array of laboratory tests and updated on a regular basis employing different analytical performance goals, in particular goals based on biological variation and the state of the art (i.e. technically achievable) outcome studies

These performance criteria should be mandatory for all tests performed in healthcare (exception have to be clearly defined!)

Results from from EQAS testing can be used in a formalized process to revise performance goals
Challenges of a general acceptance of the Stockholm criteria

Recommendations not widely introduced because such data were not available for many tests or the concept could not be applied to these tests (e.g. graphical presentation of titers, numerical + alphanumerical results, extreme analytical ranges)

In particular in immunoassays and mass-spectrometry, data highly dependent on method / sample material used. Challenge for laboratory and physicians who try to implement an improved assay when faced with data on (pre)analytical performances obtained with different methods or other sample types

Most data on biological validation were obtained on "simple Clinical Chemistry tests". Skipping too many (complex) tests by giving no recommendations at all and focusing on established tests might impede a fast progress in laboratory medicine, in particular for innovations