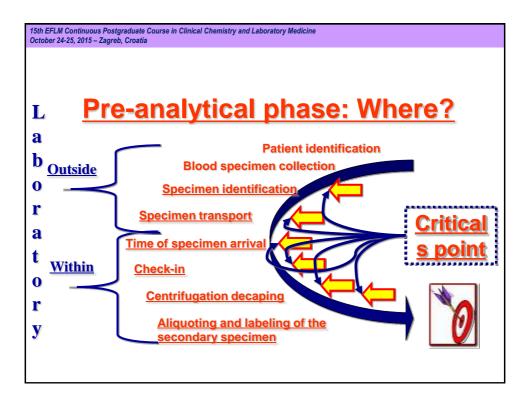
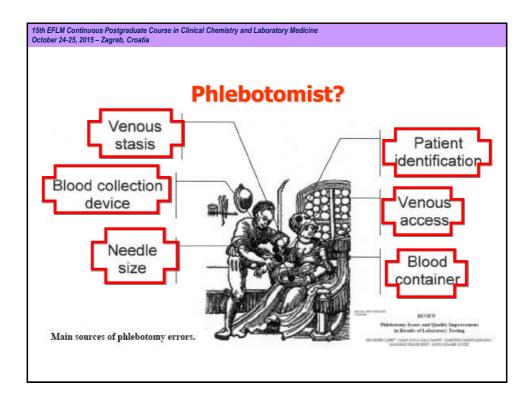
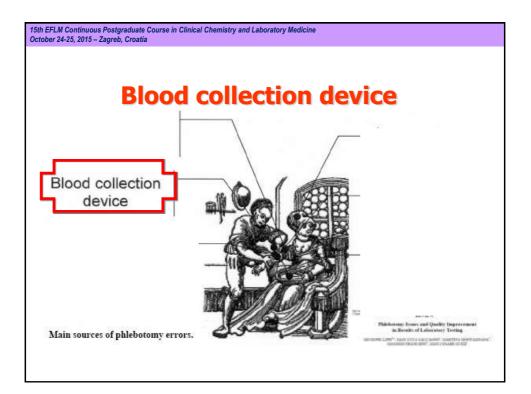


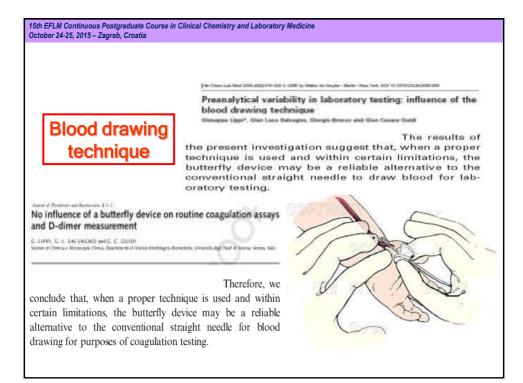
- ·		alter de Gruyter • Benin • New	York. DOI 10.1515/CCLM.2006	073	
_{Review} Preanalyt laboratory	cal variability: / testing	the dark side	of the moon	in	
Giuseppe Lippi	**, Gian Cesare Guidi ¹ , (Camilla Mattiuzzi² ar	d Mario Plebani ³		
inition	ations for recently zation fo	acknowi r Standa	eaged by	the Inte could	ernationa be <u>"any</u>

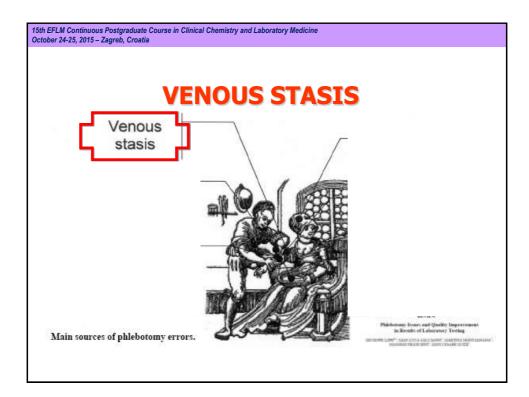


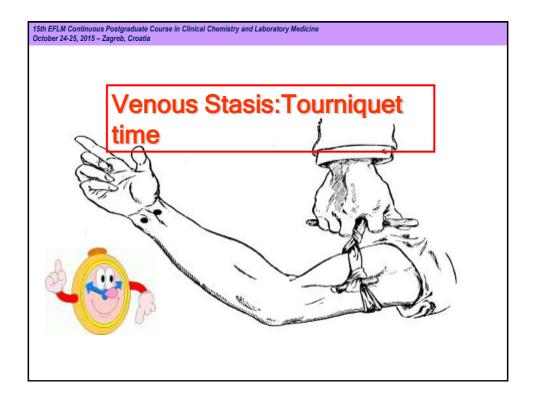


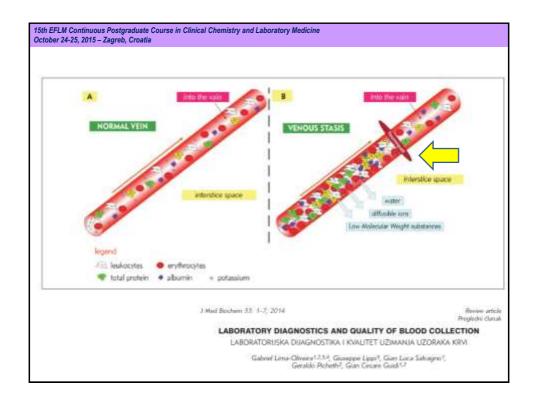


			_						
Clinical Chem 691–698 (20		a	nd	in labo	orate	ory?			
	Fr	rors in	Lab	poratory	Me	dicine			-
PIERANGE				³ Ferruccio C			CESC	A RUBBOLI ²	
TIERANOI	LO DOMINI,			Interation on interationy on			CESC	-	_
		1				Weinsche gereite beno	-	net Tan (9) Molecular genetic texts	
baller of the belowing Data collection period No. of testin No. of periods	Lagreen III, and Text (201) Textual channels 1, physical 2017 2000 2416 2000	Balticheld and Let (2) White biotetry 0 years 107 10	6 matty 300 1407114	n fair laterating Directifies DIC 4 901 1902	U years O years O re south NET	17 falcoanties 17 falcoanties 10 years 12 M 12 M	185 185 1940	santholiste (22) ant 43 september 1 graf 59 704 10	
8-1000	210	LE	180	106	410.4	36	201	201	
President photo Analytical photo	11.4% 11.4%	535 176	10.0k. 10.7k month (4.4% f val (accesser)	toertel	10080 1007 1007	445 165	00%. 12%	905 199	
Putalaha	81.86	348.	ans ans	LARS.	oar.	12.86	100.	28	
identification entrop Impath on patient inform	41 (34%) 10-	77(500)	10	512.8%	160	MD	162	80	
None- Mild		426 226 (dd/leyr)	Life	PAGE AD-ADS chartber		224	12.41	11-12	
Minister of a		248 John Tol damager	1.314	investigations 4.4%, proposal allo Evenagy could back test		50%	trow	25,78	X
Same		PL improves control interactions	Pr	eanalytical:	56	3%	5.44	6.4%	
Sec second		Bine.		alytical:		%			
			Po	stanalytical: ultiple:		9% 1%			

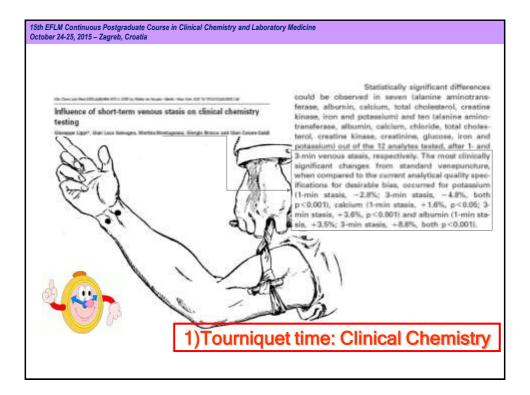

Clinical Chemistry	49-F			
691–698 (2002)	40.5			
	Errors in Labor	atory N	1 edicine	e
Pierangelo	Bonini, ^{1,2*} Mario Plebani, ³ Fer	,		
	Types of presentiaties	omere register	ad during the	
\sim	Types of preanalytical year 2000 at the Laboratory			
	Joan 2000 at the Easthatery		sing results	
	Type of error	Inpatients	Outpatients	
A A	Hemolyzed sample	8494	256	
	Insufficient sample	3256	102	
	Incorrect sample	1824	289	
	Clotted sample	792	80	
	Incorrect identification	287	2	
	Lack of signature (blood group)	266		FFFFFFFF
	Empty tube	238	8	
	Lack or wrong compilation of the accompanying module	120		
•	Sample not on ice	75	6	
	Tube broken in the centrifuge	57	36	
	Test not reserved	31		
	Urine not acidified	24		
	Open container	20	13	
	Module without signature	14		
	Urine volume not indicated	5		
	Total	15 503	792	

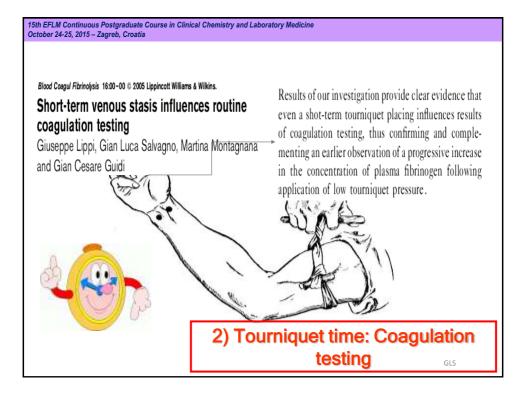


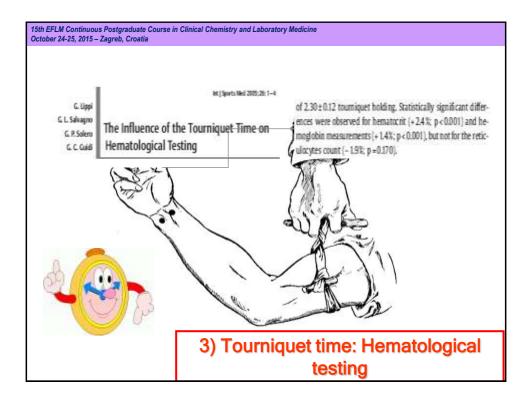


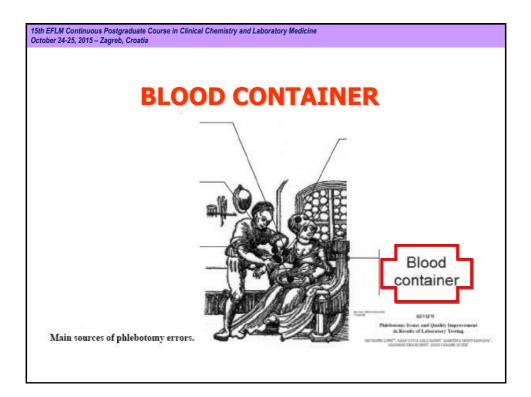


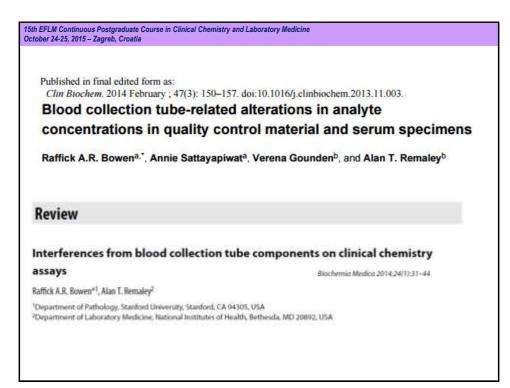
15th EFLM Continuous Postgraduate Course in Clinical Chemistry and Laboratory Medicine October 24-25, 2015 – Zagreb, Croatia Clin Chem Lab Med 2005;43(3):319-325 © 2005 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2005.055 Preanalytical variability in laboratory testing: influence of the blood drawing technique Giuseppe Lippi*, Gian Luca Salvagno, Giorgio Brocco and Gian Cesare Guidi The 95% agreement interval in the set of differences was acceptable and was mostly within the current analytical quality specifications for desirable bias. The rate of hemolysis in plasma was not statistically different between the two collection techniques. Taken together, the results of the present investigation suggest that, when a proper technique is used and within certain limitations, the butterfly device may be a reliable alternative to the conventional straight needle to draw blood for laboratory testing.

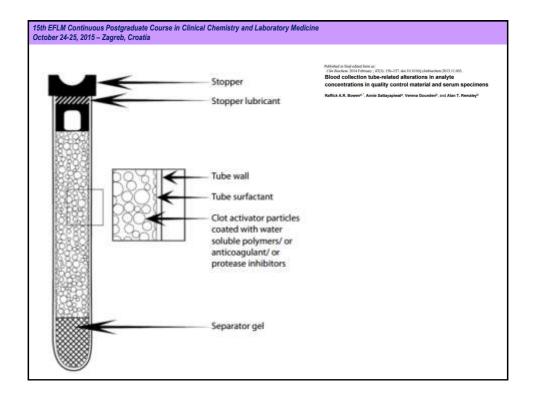


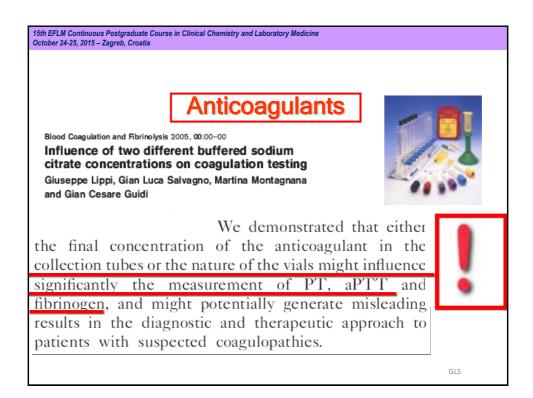


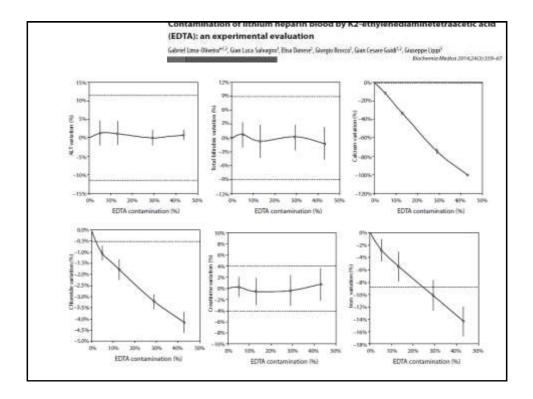


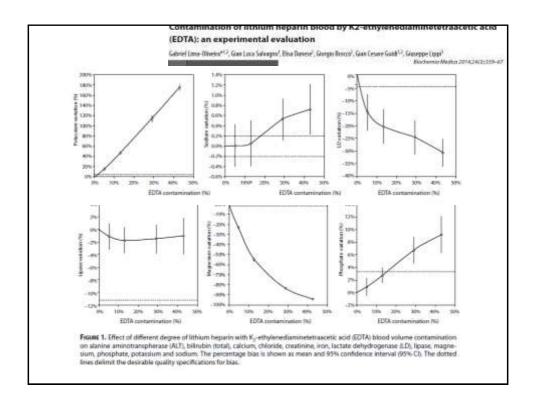


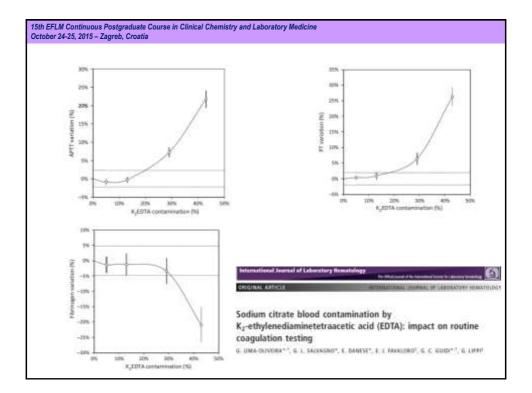

le III Impact of	venous stasis by tour	niquet application on	Cubier Lane Official routine laboratory te	1233, Guergare Leart, Guerg o Rohelti, Guergare Guerg Sts (20-22).	pa lahapert
		Tou	miquet application t	ime	m 12700
Tests	30-s	60 s	90 s	120 s	180 s
FIB	NS	NA	- K	1	. 1
PT	NS	NA	NS	D	D
aPTT	NS	NA	NS	D	D
Glu	NS	1	1	I.	D
TP	NS	1	1	1	1.
ALB	NS	1	1	1	- 10
ALKP	NS	1	1	T.	
TG	NS	1	1	1	D
К	NS	1	1	1	1
Na	NS	NS	1		1
P	NS	NS	NS	NS	1 E
Ca	NS	1	1	1	1
Mg	NS		1	1	10
PLT	NS	4	1	1	1
RBC	NS	31	1	1	10
Hb	NŚ		1	1	1
Ht	NS	1	1	1	48
WBC	NS	1	1	1	- t
NEU	NS	1	1	1	C
LYMP	NS	NS	1	- 1	1
MONO	NS	1	1	NS	NS
EOS	NS	1	1	NS	- L
BASO	NS	NS	1	1	1

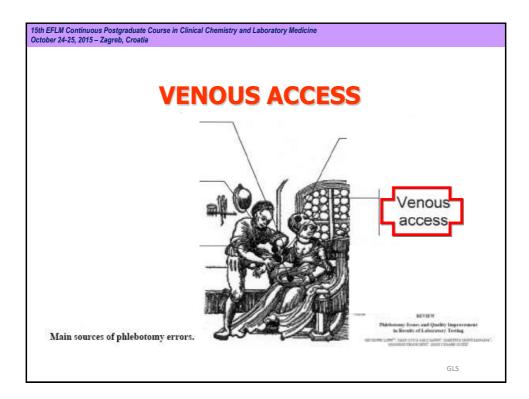


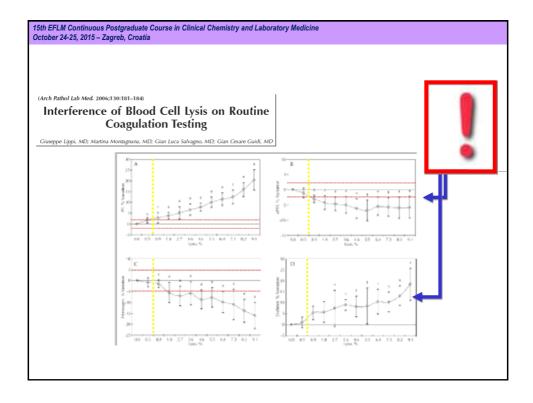


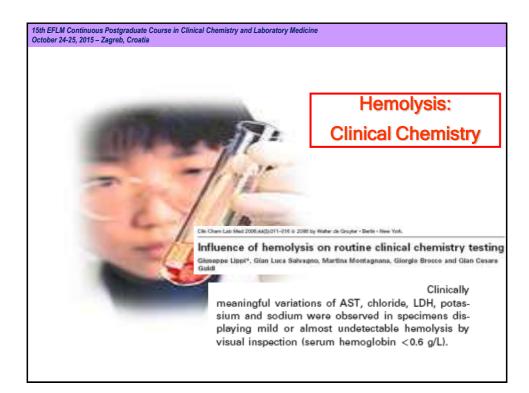


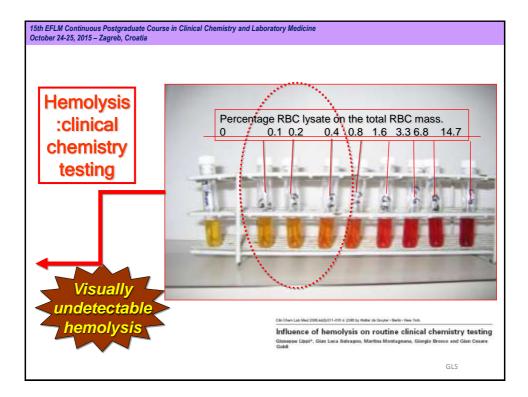


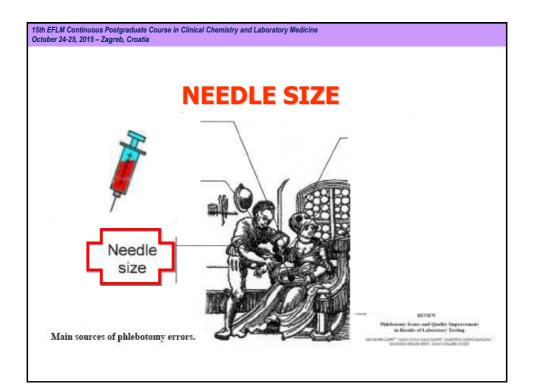

				se: impact of lithium l chemistry tests
Giorg	iel Lima-Oliveira · Gia io Brocco · Monica Vo do Picheth · Gian Cesa	i • Martina Mor	itagnana · 🛛 🛝	cered Qual Assur OI 10.1007/s00769-013-0995-6
Tube	Brand	Volume (mL)	Lithium heparin (as reported)	Manufacturer
I	VACUETTE [®]	4.0	18 IU ^a	Greiner Bio-one GmbH, Kremsmünster, Austria
п	LABOR IMPORT®	5.0	Not supplied by the manufacturer	Guangzhou Improve Medical Instruments Co. Ltda, Zhejiang, China
ш	S-Monovette®	4.9	~ 16 IU ⁴	Sarstedt, Nümbrecht, Germany
IV	PST [®]	4.0	14-17 USP ^a	Becton, Dickinson and Company, Franklin Lakes, NJ, USA
V	PST II®	3.0	17 IU ^a	Becton, Dickinson and Company, Franklin Lakes, NJ, USA

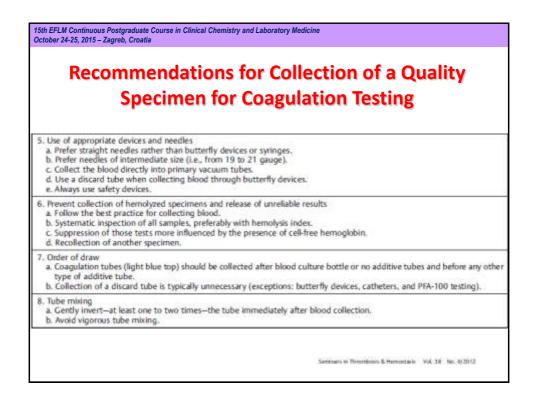

									f preanaly changes or			
						Charge	u Broom - Mus		lahagas Elisep ng Montagasar I	- Au	nil Gad Asso al 2007 carrie 41	a constanta
Tuble 3. Variability of each		_			tor different least	to of physical carries	e tako wiek 196a	un tegerie und g	il vquaar			
Ted congresses	Marc 1/12		Tale 1 Tale 1	Take I renes take EL	Tabe 1 retractable W	Zale I remainde V	Fale II retain take III	Tale E. return tale (V	Table II scream table X	Table III orman raile TV	Yaho III mman take V	Tale IV more tale V
li herena ⁿ Gena ^k	1.8 5.5	2.8 2.5	-33 (5001) 8.8 (52674)	-3.6 (0.0103) 1.1 (0.0028)	-2.8 entrits in a costra	4.7 (0,1240) 3.8 (0,4836)	-1.1 (0.210) 18 (0010)	0.0.000001) 0.0.(1.0000)	310.000	1.1 (0.2015) 	4.3 (0.0007) -1.8 (0.0028)	11 0.0005 10 0.1770
Oranitaka ^a A Balleer pikraphataal ^a A mijiaal ^a	40 34 34	22 23	6.0 (0.0120) 8:4 (0.0173) 6.9 (-0.001)	0.0 (0.4704) -6.8 (0.0001) 2.4 (0.0001)	-4.2 (0000) -1.7 (-8.000) 5.8 (0.000)	2.4 (0.1362) -4.9 (0.0360) 0.4 (0.0756)	0.0 (0.0262) 0.0 (0.4926) 0.4 (0.4926)	-4.2 (0,0040) -0.9 (0,0040) -7 (1,1-(0,0040)	1.0 (0.6265) 0.0 (0.5266) - 7.0 (- 0.0000)	-43 0.2940 -83 0.1990 -93 0.2991	2.4 (0.0010) 0.0 (0.6825) 0.1 (0.5879)	6.5 (0.000) 0.9 (0.001) 0.0 (0.011)
A quetos: astantos de port	34	11	4.8 (8.0004)	13 (36,0001)		8.0 EL62981		-2.5 (0.0067)	-5.0.000098	-5.2 (08,000)	-7,7 1-8.0000	-1+0.245
Alariaz aniectozofitzar ^a Laciale delsidergena a ^r	4.1	12	- 01.8 (0.0004) 3.7 (0.0003)	-ELE (0.092) 107 (-8.001)	4.9 (0.0012)	-35.4 (-36.0001)	53.00140	2#6(0)0 -8400005	11.1-0.000	-28 (0.130)	-2.6 (0.1988)	-14.2 m.eete
(mi. bilential	ñ.4 - 3	ñ.	1.1 (8,0053)	6.1 (0.0212)	IL T (LOBIE)	4.1 (0.0497)	-22 (0/000)	23 (0.4013)	-4.4 (0.0034)	4.4 (5.7624)	-2.2 (0.1371)	-6.9 (0.024)
pe	32	18	1.7 (0.0102)	8.8 (0.1717)	0.0 (0.2345)	INF ALTERY	-0.1 (0.0000)	-0.8.000000	-1.7 (0.0020)	10.011.00001	-0.1 (0.0253)	-0.8 (0.000)
08	1.0	14	1.3 (6.000)	8.8 (0.3000)	1.3 (0.0645)	101032201	-1.3 (6.0049)	0.0.01.01215	-1.3 (0.0085)	13 (51770)	6.0 (0.2399)	-1.7 60644
He"	5.8	1.0	6.8 (0.0004)	6.81-0.00015	6.8 (0.0802)	4.8 (0.0800)	0.0-11.00081	8.0.0042913	-1.5 (0.0034)	110.4311	-1.1 (0.1859)	-1.3 (0.1528
14 ⁴		24	-1.1 (8.0004)	-0.4 (0.1384)	28.00490	-0.7 (0.1586)	GA COOTIAN	-1.2 (0.0011)	-1.4 (0.0084)	-3.1 (1.2623)	-1.1 (000144)	1.1 (0.1098
K ^{re}	1.1	1.2	3.7 (0.0004)	1.2 (6.0076)	2.5 (0.0022)	-3.7 (0.0250)	24 (01/77)	+1.3 (0.0490)	-7.7 (0.0092)	1.2 (1.0000)	-1.8 (0.0828)	-6.2 (0.0002

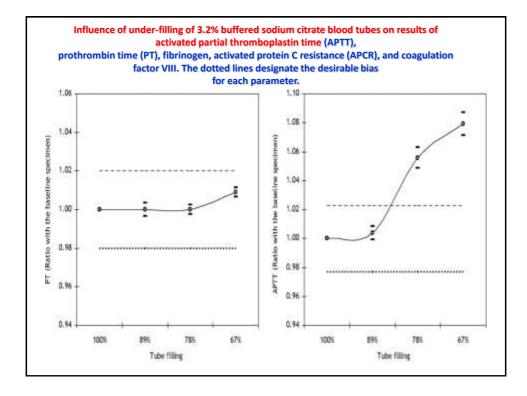


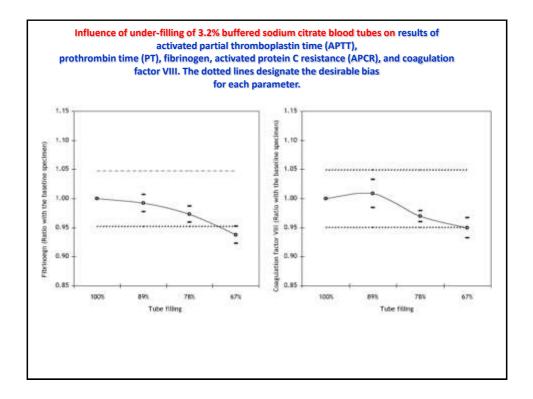


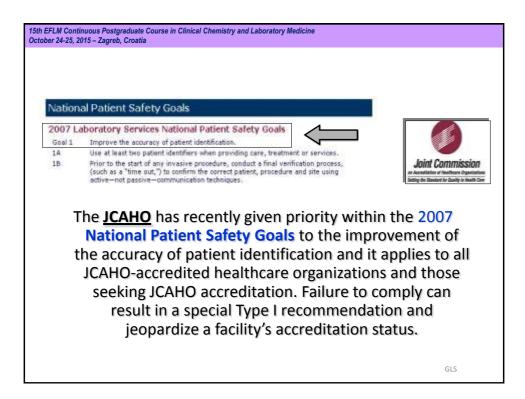




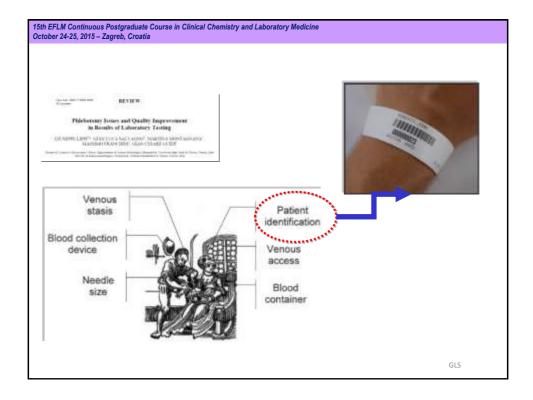


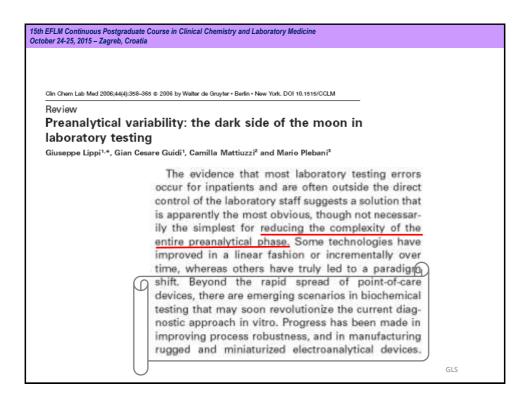


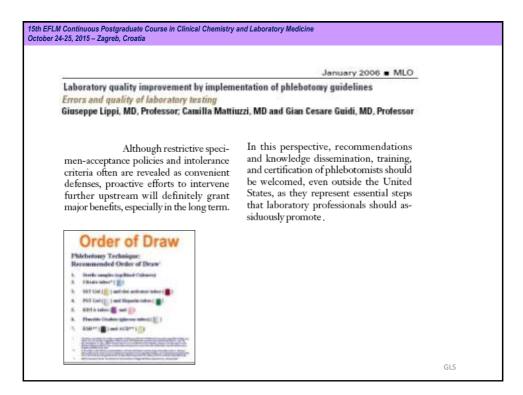

Influence o		61 © 2006 eedle t	ore si	ze on platelet	count a	and
routine coa						
	•		•	lartina Montagnana	. Giovan	ni Poli and
Gian Cesare		aoa oan	agno, w	and thornaghane	, alova	in ron and
Jian Cesare	aulai					
				unt and coagulation testing for	specimens co	lected into evacuated tubes,
employing butterfly de	vices with 21,	23 or 25 G ne	edles			
		21 G needle		23 G needle		25 G needle
	Desirable bias (%)	Mean ± SD	Mean ± SD	Passing-Bablock regression (/)	Mean ± SD	Passing-Bablock regression (/
	± 2.3	31.3 ± 4.6	31.3 ± 4.7	$y = 1.05 \pi - 1.69 (r = 0.992)$	30.9 ± 4.4	y = 0.98 x - 0.06 (r = 0.976)
Activated partial thromboplastin time (s)	1. 1.1					
thromboplastin time (s) Prothrombin time (s)	± 2.0	12.1 ± 0.8	12.1 ± 0.7	$y = 1.00 \pi (r = 0.975)$	12.1 ± 0.7	y = 0.98x + 0.19 (r = 0.974)
thromboplastin time (s) Prothrombin time (s) Fibrinogen (rrg/d)		$\begin{array}{c} 12.1\pm0.8\\ 297\pm52 \end{array}$	300 ± 54	y = 1.01x - 2.92 (r = 0.972)	297 ± 51	y = 0.98x + 5.72 (r = 0.972)
thromboplastin time (s) Prothrombin time (s) Ebrinogen (ng/d) D-dimer (ng/ml)	± 2.0 ± 4.8 Not available	297 ± 52 178 ± 66	300 ± 54 184 ± 73	y = 1.01x - 2.92 (r = 0.972) y = 1.05x - 5.07 (r = 0.965)	297 ± 51 186 $\pm 70^{+}$	y = 0.98x + 5.72 (r = 0.972) y = 1.02x + 1.91 (r = 0.989)
Activated partial thromboplastin time (s) Protheombin time (s) Ebrinogen (reg/d) D-dimer (rg/m) Pateliet count (10 ⁻² /m) Free hemoglobin (mmol/0	± 2.0 ± 4.8	297 ± 52	300 ± 54	y = 1.01x - 2.92 (r = 0.972)	297 ± 51	y = 0.98x + 5.72 (r = 0.972)

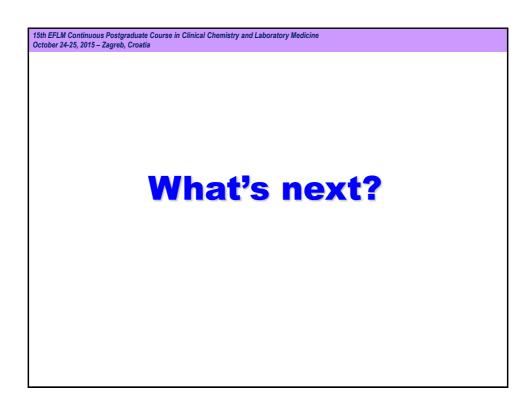

Giuseppe Lippi*, Gian Luca Salvagno, Martina Montagnana, Giorgio Brocco and Gian Cesare Guidi

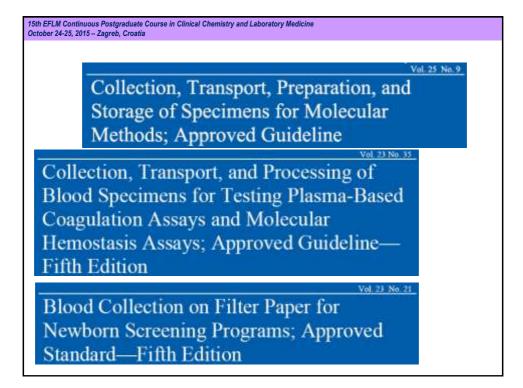
Recommendations for Collection of a Quality Specimen for Coagulation Testing						
a D b L c P d A e D	ient preparation factors iraw blood from patients fasting for at least 8 to 12 h. et the patient be in the sitting position for at least 10 to 15 min before venipuncture. atient to avoid physiologically stressing conditions and cigarette smoking before blood collection. cknowledge the use of anticoagulants or antiplatelet aggregant drugs. io not perform thrombophilia testing immediately after a thrombotic episode or while patients are on anticoagulant drug atients should not perform strenuous physical activity for at least 24 h before venipuncture.					
a.U. b. B	vent misidentification errors ise of at least two patient identifiers. ilood tubes should be labeled before venipuncture, in the presence of the patient. to not process blood specimens whenever misidentification is suspected or confirmed.					
a. A b. C	of the correct technique ppropriate education and training of phlebotomists should be established. collect blood preferably from median cubital and cephalic veins. leterge the site with 70% isopropyl alcohol and then accurately wipe off the alcohol with a dry cotton sponge. mmediately stop the procedure and select another site when the first attempt is unsuccessful.					
a, P b. 1 c. C	appropriate venous stasis lace the tourniquet ~4 inches above the site of venipuncture. he tourniquet should be tight enough to limit venous but not arterial circulation. to not prolong venous stasis after 1 min. se alternative means for visualizing the veins, e.g., transillumination devices.					

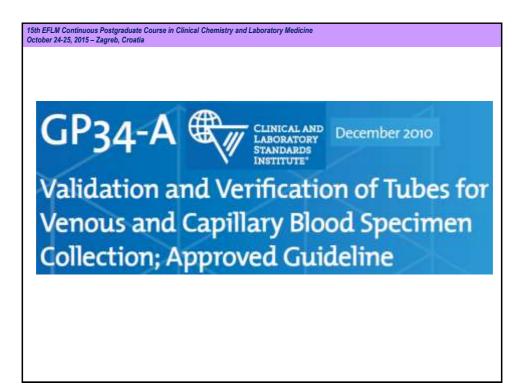






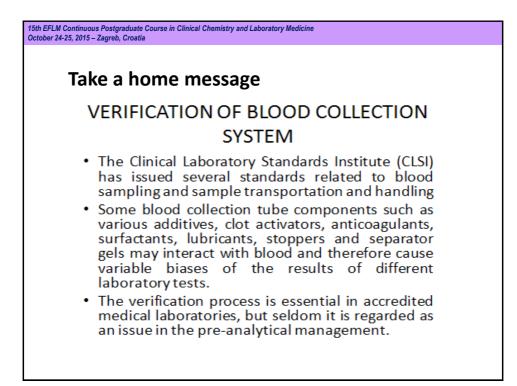






		Postgraduate Course in Clinical Chemistry and Laboratory Medicine greb, Croatia					
24-4		INF STREET					
24 -		ation of Tubes for					
		Blood Specimen					
	Approved C						
	3.1	A Note on Terminology					
	3.2	Definitions					
	3.3	Abbreviations and Acronyms					
4	Impa	et of Blood Collection Tubes on Test (Examination) Performance					
	4.1	Tube Wall 5					
	4.2	Closures 5					
	4.3	Closure Lubricant 6					
	4.4	Surfactants					
	4.5	Clot Activators					
	4.6	Anticoagulants					
	4.7	Separator Gel					
	4.8	Trace Metals					
5	Validation and Verification of Venous Blood Collection Tubes						
	5.1	Preanalytical (Preexamination) Considerations					
	5.2	Determining the Need for Validation and Verification					
	5.3	Clinical Evaluation—Planning, Designing, and Conducting the Clinical Evaluation 10					
	5.4	Data Analysis					
	5.5	Clinical Acceptance Criteria					

 18th EFLM Continuous Postgraduate Course in Clinical Chemistry and Laboratory Medicine October 24-25, 2015 - Zagreb, Creatia


 DE GRUYTER
 DOI 10.1515{cclm-2012-0597 - Clin Chem Lab Med 2013; 51(1): 229-241

 Opinion Paper
 Giuseppe Lippi*, Kathleen Becan-McBride, Darina Behúlová, Raffick A. Bowen, Stephen Church, Joris Delanghe, Kjell Grankvist, Steve Kitchen, Mads Nybo, Matthias Nauck, Nora Nikolac, Vladimir Palicka, Mario Plebani, Sverre Sandberg and Ana-Maria Simundic

 Preanalytical quality improvement: in quality we trust Opinion Paper

 Ana-Maria Simundic*, Michael P. Cornes, Kjell Grankvist, Giuseppe Lippi, Mads Nybo, Ferruccio Ceriotti, Elvar Theodorsson and Mauro Panteghini on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM)

 Colour coding for blood collection tube closures – a call for harmonisation

